
Automatic Layout of Domain-Specific Reconfigurable
Subsystems for System-on-a-Chip

Shawn Phillips
University of Washington

Department of Electrical Engineering
Seattle, WA 98195

phillips@ee.washington.edu

Scott Hauck
University of Washington

Department of Electrical Engineering
Seattle, WA 98195

hauck@ee.washington.edu

ABSTRACT
When designing SOCs, a unique opportunity exists to generate
custom FPGA architectures that are specific to the application
domain in which the device will be used. The inclusion of such a
device will provide an efficient compromise between the
flexibility of software and the performance of hardware, while at
the same time allowing for post-fabrication modification of
circuits. To automate the layout of reconfigurable subsystems for
system-on -a-chip we present template reduction, standard cell,
and circuit generator methods. We explore the standard cell
method, as well as the creation of FPGA-specific standard cells.
Compared to full custom circuits, we achieve designs that are
46% smaller and 36% faster when the application domain is well
known in advance. In cases where no reduction from the full
functionality is possible, the standard cell approach is 42% larger
and 64% slower than full-custom circuits. Standard cells can thus
provide competitive implementations, with significantly greater
opportunity for adaptation to new domains.

General Terms
Performance, Design, Experimentation

Keywords
Domain-Specific FPGA, Standard Cells, Automatic Layout
Generation, System-on a-Chip

1. INTRODUCTION
With the advent of new fabrication technologies, designers now
have the ability to create integrated circuits utilizing over one
hundred million gates, with operating frequencies in the GHz
range. This large increase in transistor count has increased the
complexity of devices, but it is also enabling designers to move
away from the well known system-on-a-board to a heterogeneous
system-on-a-chip (SOC) methodology [5]. This evolution in
integration is driven by the need to reduce the overall cost of the
design, increase inter-device communication bandwidth, reduce

power consumption, and remove pin limitations.
There are several drawbacks to the SOC design methodology.
Designers of SOCs have a larger design space to consider, an
increase in prototyping costs, a more difficult job of interfacing
components, and a longer time to market. There is also a loss in
post-fabrication flexibility. In the system-on-a-board approach,
designers have the ability to customize the system by careful
selection of components, with easy component replacement in late
stages of the design cycle. But in the current SOC design
methodology framework, in which only ASIC components are
used, very tight integration is the goal. Therefore, component
changes late in the design cycle are not feasible.
This loss of post-fabrication flexibility can be alleviated with the
inclusion of FPGA logic onto the SOC. Unlike application
specific integrated circuits (ASICs), by including FPGAs,
designers would gain the ability to alter the SOC to meet differing
system requirements after the SOC has been fabricated.
However, FPGAs are often several times slower, larger, and less
energy efficient than ASICs, making them a less ideal choice for
high performance, low power designs. Domain-specific FPGAs
can be utilized to bridge the gap that exists between flexible
FPGAs and high performance ASICs.
A domain-specific FPGA is a reconfigurable array that is targeted
at specific application domains, instead of the multiple domains a
standard FPGA targets. Creating custom domain-specific FPGAs
is possible when designing an SOC, since even early in the design
stage designers are aware of the computational domain in which
the device will operate. With this knowledge, designers could
then remove from the reconfigurable array hardware and
programming points that are not needed and would otherwise
reduce system performance and increase the design area.
Architectures such as RaPiD [4], PipeRench [6], and Pleiades [1],
have followed this design methodology in the digital signal
processor (DSP) computational domain, and have shown
improvements over reconfigurable processors within this space.
This ability to utilize custom arrays instead of ASICs in high
performance SOC designs will provide the post-fabrication
flexibility of FPGAs, while also meeting stringent performance
requirements that until now could only be met by ASICs.
Possible application domains could include signal processing,
cryptography, image analysis, or any other computationally
intensive area. In essence, the more that is known about the target
applications, the more inflexible and ASIC-like the custom array
can be. On the other end of the spectrum, if the domain space is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA ’02, February 24-26, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-452-5/02/0002…$5.00.

only vaguely known, then the custom array would need to provide
the ability to run a wide range of applications, and thus look and
perform more like a standard FPGA.
Since all of the components in an SOC need to be fabricated after
integration, this provides designers with a unique opportunity to
insert application specific FPGAs into their devices.
Unfortunately, if designers were forced to create custom logic for
each domain-specific subsystem, it would be impossible to meet
any reasonable design cycle. However, by automating the
generation of the application specific FPGAs, designers would
avoid this increased time to market and would also decrease the
overall design cost.
These factors have led us to start the Totem project, which has the
ultimate goal of automatically generating custom reconfigurable
architectures based upon the perceived application domain in
which the device will be used. Since the custom array will be
optimized for a particular application domain, we expect that it
will have a smaller area and perform better than a standard FPGA,
while retaining most of the benefits of reconfigurability.
First we present a short background on RaPiD and Totem. Next,
we examine the approach and experimental setup that we have
taken to automate the layout of a domain-specific reconfigurable
subsystem. Finally, we will show how our approach was able to
create circuits that perform within Totem’s design specifications,
paving the way for future work in providing custom
reconfigurable subsystems in SOCs.

2. BACKGROUND
2.1 RaPiD
We are using the reconfigurable-pipelined datapath (RaPiD)
architecture as a starting point for the circuits that we will be
generating [4]. RaPiD is positioned between standard FPGAs and
ASICs. Its goal is to provide the performance of an ASIC while
maintaining reconfigurability. RaPiD, like an FPGA, achieves
reconfigurability through the use of block components such as
memories, adders, multipliers, and pipeline registers. But, unlike
a commercial FPGA, RaPiD is not targeted at random logic, but at
coarse-grained, computationally intensive functions like
arithmetic.
RaPiD utilizes a one-dimensional structure to take advantage of
the fact that all of its functional components are word-width
computational devices. One of the advantages of a one-
dimensional structure is a reduction in complexity, especially in
the communications network. Another advantage is the ability to
map systolic arrays very efficiently, leveraging all of the research
into the compilation of algorithms onto systolic arrays. Finally,
while a two dimensional RaPiD is possible, most two-dimensional
algorithms can be mapped onto a one-dimensional array through
the use of memory elements.
The version of RaPiD that we are benchmarking against, RaPiD I,
consists of memories, ALUs, and multipliers that are all
connected by a one-dimensional segmented routing structure.
Data flows through the array along the horizontal axis, with the
vertical axis being used only to provide connections between
functional units. To create different versions of RaPiD that target
different application domains, the following changes need to be
made to the array: modify existing or add new functional units,
change the width of the buses or the number of buses present, and

modify the routing fabric. Figure 1 shows an example of one
possible RaPiD cell. Multiple cells would be tiled along the
horizontal axis.

R
E
G

R
E
G

R
A
M R

E
G

R
E
G

R
A
M

R
A
MR

E
G

R
E
G

A
L
U

A
L
U

Multiplier

Figure 1. A block diagram of a basic RaPiD cell. Multiple
cells are tiled along the horizontal axis.

2.2 Totem
Reconfigurable hardware is a very efficient bridge that fills the
gap between software implementations running on general-
purpose processors and ASIC implementations. But, standard
reconfigurable hardware targets the general case, and therefore
must contain a very generic mix of logic elements and routing
resources that are capable of supporting all types of applications.
This creates a device that is very flexible, allowing for bug fixes,
upgrades, and runtime reconfiguration, among others. Yet, if the
application domain is known in advance, optimizations can be
made to make a compact design that is more efficient than
commercial FPGAs. While the benefits of creating a unique
FPGA for each application domain are apparent, in practice the
design of a new FPGA architecture for each and every application
space would require an increase in design time and create
significant additional design costs. The goal of the Totem project
is the automatic generation of domain-specific FPGAs, giving
designers a tool that will enable them to benefit from a unique
FPGA architecture without the high cost and lengthy design
cycle. The automatic generation of FPGAs can be broken into
three major parts: high-level architecture generation, VLSI layout
generation, and place-and-route tool creation.
The high-level architecture generator will receive, as input from
the designer, information about the set of applications that the
SOC will target. The architecture generator will then create a
coarse-grained FPGA that consists of block components such as
memories, adders, multipliers, and pipeline registers [3]. Routing
resources will then connect these components to create a one-
dimensional structure. Extending Totem to create two-
dimensional arrays of functional units is possible, and will be
explored in future research.
The final structure that is created will fall somewhere on the scale
between ASICs and commercial FPGAs. Where on this scale the
final device will fall depends on how much information the
designer is able to provide in advance about the applications that
will run on the reconfigurable hardware, and how similar those
applications are in composition. If the designer can provide a lot
of information, and the applications are similar in composition,
then more hardware and connection points can be removed from
the FPGA, thus generating a more compact and higher performing
design. On the other side of the scale, if the designer does not

know which applications will run on the SOC, or the applications
that will run on the SOC are very different, then more
reconfigurable components will be needed to support a wider
range of logic, causing the final design to be more like a
commercial FPGA. After the high-level architecture generator
creates an architecture that is able to support the applications that
will run on it, this information is disseminated to both the VLSI
layout generator and the place and route tool generator.
The VLSI layout generator has the task of creating a fabrication-
ready layout for the custom device by using the specifications that
were provided by the high-level architecture generator. The
layout generator will be able to create a layout for any possible
architecture that the high-level architecture generator is capable of
producing. The difficult task for the layout generator is creating
efficient designs, so as not to squander the performance and area
gains that the architecture generator was able to achieve

Figure 2. Simplified example of template reduction. The
initial template (top) is a modified version of the Xilinx

XC6200. The high-level architecture generator has found two
target applications (middle). Logic resources that are not

needed, including routing resources, are removed from the
initial template to create the optimized template (bottom).

Notice how both DFFs have been removed and how the 2LUT
in the right cell is reduced to an OR gate.

over general-purpose FPGAs. The layout generator will be
flexible enough to change over time to take advantage of smaller
device sizes as process technology scales down. In addition, the
layout generator will produce a bit-stream format that the place
and route tools will be able to use to configure the custom FPGA.
Three different methods are being explored to automate the layout
process: template reduction, standard cells, and FPGA-specific
circuit generators. Each of these will be discussed in greater
detail later in this paper.
Once the custom architecture is created, the end user will then
need a tool set that will automatically generate mappings that
target the custom array. The place and route tool generator will
create a physical mapping of a user application by using an
architecture description that was created by the high-level
architecture generator and the bit-stream format that was created
by the VLSI layout generator. It does this task by the use of a
placement tool, which is based on the simulated annealing
algorithm, and a router that is an adaptation of the Pathfinder
algorithm [7].

3. APPROACH
Current design methodologies for the layout of circuits typically
fall under either full-custom design or standard-cells, with both of
these approaches having associated pros and cons. Producing a
full-custom circuit is a labor-intensive task, which requires a very
long and expensive design cycle. However, the resulting circuit is
created is usually the fastest and the smallest that is possible at
that time. Generating a standard cell library can be a difficult
endeavor, and therefore companies that have extensive libraries
vigorously guard them from competitors. However, once the
library is created, the ability for indefinite reuse and design
automation justifies both the time and expense involved.
Unfortunately, circuits that are created using standard cells are
larger and slower than full-custom designs [11]. One of the goals
of the Totem project is to automate the generation of FPGAs that
begin to approach the level of performance that full-custom
layouts currently enjoy.
The Totem project has decided to investigate three different
approaches to automate the layout process: standard cells,
template reduction, and FPGA-specific circuit generators. All
three methods will be outlined in the following sections. A goal
of the Totem project is to decide which of the three approaches
should be used in a particular situation. We may find that one
approach is the best for all situations, or that each approach has
compelling characteristics that make it the best choice in a
particular instance. The objective of this paper is to investigate
the standard cell approach. Towards this end, we present the
creation of a standard cell tool flow and the investigation of how
standard cell templates compare to a full custom RaPiD array.
We further refine the standard cell approach by adding cells to the
library that are used extensively in FPGA designs, thus creating
an optimized library. These include muxes, demuxes, and SRAM
bits, among others. We predict that by adding a few critical cells,
the results obtained can be significantly enhanced.

3.1 Template Reduction Method
The template reduction method will leverage the performance
edge that full-custom layouts provide, in an automated fashion.
This is achieved by using feature rich macro cells as templates

that are reduced and compacted to form the final circuit.
Providing quality macro cells that can cover a wide range of
applications is critical to the success of this method. Therefore,
extensive profiling of application domains will be required to
establish what resource mixes are needed for each template.
The potential exists to create designs that achieve a performance
level that is at parity with that of ASICs. But this is only possible
if two conditions are met: the applications that the template needs
to support are similar in composition, and the domain that
contains the applications is a subset of the initial template. The
first condition implies that if a template is required to support a
wide range of applications, then it will have to retain most of its
reconfigurability. This means that the performance of the final
template will be near that of an FPGA, which, as noted earlier, is
usually not optimal. While the first condition may mean the final
template may not perform well, the second condition, if not met,
may mean that the applications specified cannot be mapped onto
the initial template. This could occur, for example, if the initial
template does not contain a multiplier, but the applications that
need to run on the template require one.
With these conditions in mind, if the design specified by the
architecture generator does not deviate significantly from the
available macro cells, we can use the template reduction method
to automate the layout generation in a fast and efficient manner
without sacrificing performance. Since our initial focus is on a
one-dimensional array as our target FPGA, we will be using
variations of the RaPiD architecture as a basis for our feature rich
macro template.

3.2 Standard Cell Implementation
The use of template reduction produces very efficient
implementations, but it only works well if the proposed
architecture does not deviate significantly from the provided
macro cells. To fill the gaps that exist between templates’
domains, we have implemented a standard cell method of layout
generation. This method will provide Totem with the ability to
create a reconfigurable subsystem for any application domain.
Using standard cells also creates an opportunity to more
aggressively optimize logic than if templates were used, since the
circuit can be built from the ground up. It will also allow the
designer to easily integrate this method into the normal SOC
design flow. In addition, the structures created will retain their
reconfigurability since the CLBs and routing interconnect will be
programmable. This is achieved by creating a structural Verilog
representation of the FPGA, and then generating a standard cell
layout based upon that Verilog. Since the Verilog design includes
SRAM bits and programmability, the result is a reconfigurable
ASIC.

Unfortunately, this method also inherits all of the drawbacks
introduced into a design by the use of standard cells, including
increased circuit size and reduced performance. To overcome
these failings, we will create standard cells that are often used in
FPGAs. These cells will include LUTs, SRAM bits, muxes,
demuxes, and other typical FPGA components. Some of these
units are shown in Figure 3. Since these cells are used extensively
in FPGAs, significant improvement could be attained. In this
work we compare a standard cell library and a more
comprehensive optimized library.

3.3 FPGA-specific Circuit Generators
The standard cell design method is very flexible, and it gives the
designer the ability to implement almost any circuit. However,
one drawback associated with the flexibility of this design method
is its inability to leverage the regularity that exists in FPGAs. By
taking advantage of this regularity, a method may produce
designs that are of higher quality than standard cell based
designs.
One way of creating very regular circuits is through the use of
generators. Circuit generators are used to great effect in the
memory industry, and it is our belief that we will be able to
achieve similar results. FPGA components, like memories, have
well-known, constrained structures, positioning them as viable
candidates for circuit generators.
Circuit generators will be able to create structures that are of
higher quality than those created by the standard cell method.
However, unlike the template reduction method, the circuit
generators will be able to handle a wider variety of possible
architectures. Thus, circuit generators will be positioned to fill
the gap between the inflexible, but powerful, template reduction
method and the very flexible, but less efficient, standard cell
method.
Circuit generators will be implemented to create the parts of the
FPGA that inherently have regularity. This includes generators
for the routing channels, LUTs, and muxes and demuxes for
routing interconnect. To create an entire reconfigurable
subsystem out of blocks of logic that circuit generators have
created, one would only need to abut the blocks together.
Therefore, all of these generators will be combined to create a
method that is capable of generating a complete reconfigurable
subsystem.

4. EXPERIMENTAL SETUP AND
PROCEDURE
4.1 Setup
To retain as much flexibility as possible in our standard cell
implementation, behavioral Verilog representations were created

Figure 3. FPGA-specific standard cells: (left) 1-bit DFF, (middle) 4:1 mux, (right) 1:4 demux

for all of the RaPiD components. Synopsys was used to synthesize the behavioral Verilog to produce structural Verilog
Table 1. Template nomenclature and description, reflecting a range of realistic domain-specific optimizations.

Template Description

Not_reduced Full template
PA Removed pipeline registers after the second ALU
PB Removed pipeline registers before the first ALU
ALU Converted the ALUs to adders
PB_PA Removed pipeline registers before the first ALU and after the second ALU
PA_ALU Removed pipeline registers after the second ALU and reduced the ALUs to adders
PB_ALU Removed pipeline registers before the first ALU and reduced the ALUs to adders

PB_PA_ALU Reduced the ALUs to adders and removed pipeline registers before the first ALU and after the second
ALU

that uses our standard cells [8]. This will enable us to swap out
standard cell libraries, since we would only need to re-synthesize
the behavioral Verilog with a new library file generated for the
new standard cell library.
Silicon Ensemble (SE) was used to place and route the cells. SE
is part of the Cadence Envisia Tool Suite, and is capable of
routing multiple layers of metal, including routing over the cells.
One powerful feature of SE is its ability to run from macro files,
minimizing the amount of user intervention.
Cadence was chosen as our schematic and layout editor because it
is a very robust tool set that is widely used in industry [2].
Cadence also has tools for every aspect of the design flow. We
are currently using the TSMC 0.25µm design rules for all layouts
created in Cadence. As technology changes, we will be able to
scale our layouts down without a loss of quality in our results.
The full custom RaPiD components that were used in
benchmarking were laid out by Carl Ebeling’s group for the
RaPiD I powertest. All circuits were laid out using the Magic
Layout Editor for the HP 0.35µm process. The designs were
ported over to Cadence and the TSMC 0.25µm process.
The choice of a standard cell library was based upon the need to
find an industrial strength library that has been laid-out for the
TSMC 0.25µm process. This led us to the Tanner standard cell
library that is available through the MOSIS prototyping
production service [10]. This library has thirty-two basic blocks
at its core, which can then be applied to produce any combination
of the 1400+ functional blocks that Tanner provides in its Tanner
SchemLib symbol library.
We use the Epic Tool Suite to analyze the performance of all of
the circuits that have been created. Synopsys has developed the
Epic Tool Suite as a robust circuit simulator that enables
designers to verify circuit performance at both pre-layout and
post-layout without fabrication of the design [8]. The Epic tools
use a version of the SPICE engine for circuit simulation, and they
also use the SPICE netlist format as circuit input and the SPICE
BSIM3V3 as a transistor model format. The tool that we will be
mainly using from the tool suite is Pathmill.

4.2 Procedure
The experimental procedure was driven by our use of RaPiD as a
starting point, and the use of the tools that were mentioned in the
experimental setup section. While there is still considerable

manual intervention involved in each step of the flow, our
eventual goal is a truly automated process.
We first imported the RaPiD I powertest components from the
Magic Layout Editor using a HP 0.35µm process to Cadence
using a TSMC 0.25µm process. To do this, the files were first
exported out of the Magic Layout Editor in a CIF file. We then
proceeded to modify these CIF files to force compatibility with
the TSMC 0.25µm process. Once this was done, the files were
then imported into Cadence, and all remaining design errors were
corrected by hand. Schematic and Verilog representation of the
RaPiD components were also created.
The next step was to find an appropriate standard cell library. As
stated above, we settled on the Tanner Standard Cell library.
Even though the library was targeted at the TSMC 0.25µm
process, the layouts were generated using the more aggressive
deep sub-micron version of the process with a lambda of 0.12µm.
However, we are currently using the deep-micron version of the
TSMC 0.25µm process with a lambda of 0.15µm. This caused
some minor problems that were cleaned up by hand using pre-
import scripts and some post-import modifications. A library
information file representation of the Tanner Cells was also
created for Synopsys.
To generate the standard cell version of RaPiD, the tool-flow
discussed earlier was used. A behavioral Verilog representation
of RaPiD was first created. Synopsys was then used to synthesize
this Verilog file to create a structural Verilog file that used the
Tanner standard-cells as modules. With this structural Verilog,
SE was able to then place-and-route the entire design. The
utilization level of SE, which is an indication of how dense cells
are packed in the placement array, was increased until the design
could not be routed. For most designs this level was set to 90%.
The aspect ratio of the chip was also adjusted from 1, which is a
square, to 2, which is a rectangle that is twice as long as it is high,
to find the smallest layout. For all designs, an aspect ratio of 1
yielded the smallest layout. Once SE was done creating the
layout, the EPIC tool-set was used to evaluate the quality of the
circuit that was created.

5. RESULTS
The tool-flow and procedure were discussed in detail in the
experimental setup and procedure above. The tools were run on
nine Sun Ultra Five workstations, four machines with 512MB of
memory and 5 machines with 384MB of memory. The runtime

0

100000

200000

300000

400000

500000

600000

700000

N
R

_1
6

P
A

_1
6

P
B

_1
6

A
LU

_1
6

P
B

_P
A

_1
6

P
A

_A
LU

_1
6

P
B

_A
LU

_1
6

P
B

_P
A

_A
LU

_1
6

N
R

_8

P
A

_8

P
B

_8

A
LU

_8

P
B

_P
A

_8

P
A

_A
LU

_8

P
B

_A
LU

_8

P
B

_P
A

_A
LU

_8

Template Type

A
re

a
(L

am
bd

a2)
14 Buses FPGA SC
11 Buses FPGA SC
8 Buses FPGA SC
14 Buses SC
11 Buses SC
8 Buses SC
Full Custom RaPiD

Graph 1. This graph shows the area of full custom RaPiD as well as all of the different versions of the templates in l2 vs. template

types. The y-axis is the area of the templates in l2, while the x-axis is a list of each version of template, from most feature rich (left)
to least (right).

0

100000

200000

300000

400000

500000

600000

700000

20%30%40%50%60%70%80%90%100%

Utilization

A
re

a
(L

am
bd

a2)

Tanner SC
FPGA SC
FC RaPiD

Graph 2. This graph shows the area of full custom RaPiD, as well as all of the different versions of the templates in l2. The y-axis
is the area of the templates in l2, while the x-axis is the percent utilization of the original template, from most feature rich (left) to

least (right).

of the entire tool-flow to generate each template was
approximately six hours.
As a template is customized towards an application domain, gains
in performance and reductions in power and area are possible. To
test this, the RaPiD architecture templates were optimized to

reflect possible design scenarios. The scenarios included
reducing the ALU to an adder, reducing the word size, reducing
the number of pipeline registers, and all of the associated cross
products. The scenarios were created to reflect reasonable design
tradeoffs. For example, if a circuit will be used to support
applications that only need to perform arithmetic, the designer

could convert the ALUs to adders to increase performance and
reduce circuit size. Table 1 describes the eight different designs
that were created. These designs were further implemented with
8 buses, 11 buses, and 14 buses for both the Tanner and FPGA
standard cells. This reflects varying the richness of the
interconnect in the system. Finally, all designs were created with
both an eight-bit and a sixteen-bit word size.

5.1 Area
Graph 1 and Graph 2 show the area of the templates as well as
full custom RaPiD in units of λ2. Graph 1 shows the impact of
each design scenario, varying from the original RaPiD (left) to a
highly reduced version (right). Graph 2 converts this to %
utilization of the original, full RaPiD template, measured by the
proportion of transistors retained by the reduced templates. As
can be seen, the full-custom RaPiD is 2.7x smaller than the
standard cell version. However, modifications to the architecture
can reduce this impact, achieving up to a 2.1x smaller design with
Standard Cells than with the full custom, unreduced RaPiD tile.
This demonstrates the benefits that are possible by optimizing the
FPGA architecture to the application domain of the SOC. Much
of this benefit comes from a reduced word size (switching from
16-bit to 8-bit templates), and by reducing the number of routing
registers in the pipelined interconnect. Switching to an optimized
standard cell library, by adding 4 FPGA-specific cells to a generic
library, achieves an additional reduction of 9% to 18.9%.

5.2 Performance
Graph 3 and Graph 4 are similar to the previous ones, but in this
case present the performance of the resulting templates. As
described in the experimental setup and procedure section,
performance numbers were generated using PathMill to find the
longest-path delays.
The performance numbers also scale with reductions in the
amount of resources in the FPGA, but in a much less linear
manner. While the elimination of each transistor in the design has
an approximately equal impact on the area of the overall design,
the improvements in performance depend much more heavily on
what specific transistors are removed. The most striking feature
of the graph, the sudden dips, can be attributed to the fact that the
reduction of the number of buses or of the bit width does not
affect performance nearly as much as converting the ALU to an
adder. Specifically, the replacement of an ALU with an Adder
(which improves area on average by only 19%) yields on average
a 27% improvement in the performance, while switching to an 8-
bit word size (which approximately halves the chip area) only
achieves a 13% performance gain. To separate out these effects,
the templates were grouped as shown in Graph 5 based on ALU
vs. adder and 16-bit vs. 8-bit word-size. Also, while there are not
any 16-bit templates that have a smaller size than the full custom
RaPiD, there are eight FPGA standard cell templates and three
Tanner standard cell templates that have a shorter critical path.
These benefits range from 7% to 36%.

6. CONCLUSIONS
As SOCs move into the mainstream, it is likely that FPGAs will
play a major role in providing the post-fabrication modification
that these devices will require. This presents some interesting
opportunities for creating high performance FPGAs that are
targeted at specific application domains, instead of random logic.

To implement these new architectures in a timely fashion,
automation of the design flow is a necessity.

Figure 4. Tanner standard cell (top), FPGA standard cell

(middle), and full-custom RaPiD (bottom). The relative size of
the various layouts is preserved.

Table 2 summarizes the results of automating the design through
the use of standard cells by providing an easy reference for
choosing a particular optimization to reach specific design goal.
For example, if a design called for a reduction in area, and you do
not need all of the functionality that an adder can provide, than
reducing ALUs to Adders would give you a 30% reduction in area
and a 40% increase in performance.
In this work we have shown that automation of layout generation
for domain specific FPGAs is possible. We have further shown
that as a target application domain narrows, the savings gained

4

6

8

10

12

14

16

N
R

_1
6

PA
_1

6

PB
_1

6

AL
U

 _
16

PB
_P

A_
16

PA
_A

LU
_1

6

PB
_A

LU
_1

6

PB
_P

A_
AL

U
_1

6

N
R

_8

P
A

_8

P
B

_8

AL
U

_8

P
B

_P
A

_8

PA
_A

LU
_8

PB
_A

LU
_8

PB
_P

A_
AL

U
_8

Template Type

Pe
rf

or
m

an
ce

 (n
s)

14 Buses FPGA SC
11 Buses FPGA SC
8 Buses FPGA SC
14 Buses SC
11 Buses SC
8 Buses SC
Full Custom RaPiD

Graph 3. This graph shows the performance of full custom RaPiD as well as all of the different versions of the templates in ns. The
y-axis is the performance of the templates in ns, while the x-axis is a list of each version of template, from most feature rich (left) to

least (right).

4

6

8

10

12

14

16

20%30%40%50%60%70%80%90%100%
Utilization

Pe
rf

or
m

an
ce

 (n
s)

Tanner SC
FPGA SC
FC RaPiD

Graph 4. This graph shows the performance of full custom RaPiD as well as all of the different versions of the templates in ns. The

y-axis is the performance of the templates in ns, while the x-axis is the percent utilization of the original template, from most
feature rich (left) to least (right).

from removing unused logic from a design enables a standard cell
method of layout generation to approach that of a full custom
layout in area and performance, and in some cases surpass them,
with areas ranging from 270% larger to 46% smaller, and
performance raging from 157% slower to 36% faster. Finally, by
adding to a standard cell library a few key cells that are used
extensively in FPGAs, improvements of 9% to 18.9% can be
achieved.

The choice of what mechanism to use for implementing domain-
specific reconfigurable subsystems is more than just a choice
based upon area and performance. A full-custom tile, such as the
RaPiD tile used here, provides a highly optimized, but completely
inflexible, set of resources. Applications that need different
resources, or greater amounts of a given type, may simply be
unable to handle these demands. A standard cell methodology
allows for any resource mix to be applied, with at

4

6

8

10

12

14

16

20%30%40%50%60%70%80%90%100%
Utilization

Pe
rf

or
m

an
ce

 (n
s)

Tanner ALU_16
FPGA ALU_16
Tanner ALU_8
FPGA ALU_8
Tanner Adder_16
FPGA Adder_16
Tanner Adder_8
FPGA Adder_8
FC RaPiD

Graph 5. This graph shows the performance of full custom RaPiD as well as all of the different versions of the templates

in ns. The templates are grouped depending upon whether they contain ALUs or adders, or whether they are 16-bit or 8-
bit. The y-axis is the performance of the templates in ns, while the x-axis is the percent utilization of the templates, from

most feature rich (left) to least (right).

most a 42% increase in area, and a 64% increase in
performance.
Alternative approaches may help provide the middle-ground
between the high quality but inflexible full custom tiles, and the
completely inflexible but high overhead standard cell
methodologies. In our future efforts we will investigate
template reduction and circuit generator approaches. These four
approaches combined should provide a spectrum of approaches,
with each yielding benefits for some users. Overall, we hope to
be able to close the gap between fixed tile-based FPGAs
currently being developed in industry for SOC designs, and the
traditional benefits of strictly ASIC designs.

Table 2. Average benefit gained by optimization type.

 Improvements
Basic Optimization Area Performance

16 Bit to 8 Bit 2.0x 1.1x
ALU to Adder 1.3x 1.4x
Not Reduced to PA 1.1x 1.1x
Not Reduced to PB 1.2x 1.1x
Tanner SC to FPGA SC 1.2x 1.0x

SC to Full Custom 1.3x 1.2x

7. ACKNOWLEDGEMENTS
The authors would like to thank the RaPiD group, especially
Carl Ebeling and Chris Fisher, for the RaPiD powertest full
custom layout used in this research. We also are indebted to
Larry McMurchie for support on the Cadence tool-suite. The

idea for using standard cells to implement FPGA architectures
was originally proposed by Herman Schmit. This work was
supported in part by grants from the National Science
Foundation and DARPA. Scott Hauck was supported by an
NSF CAREER Award and a Sloan Research Fellowship.

8. REFERENCES
[1] Abnous, A. and Rabaey, J. M. "Ultra-low-power domain-

specific multimedia processors," Proc. of IEEE VLSI
Signal Processing Workshop, Oct. 1996.

[2] Cadence Design Systems, Inc., “Openbook”, version 4.1,
release IC 4.4.5, 1999.

[3] Compton, K. and Hauck, S. “Totem: Custom
Reconfigurable Array Generation”, IEEE Symposium on
FPGAs for Custom Computing Machines, 2001.

[4] Ebeling, C., Cronquist, D. C. and Franklin, P. “RaPiD–
Reconfigurable Pipelined Datapath”, 6th Annual Workshop
on Field Programmable Logic and Applications, 1996.

[5] Glökler, Tilman “System-on-a-Chip Case Study: ADSL-
Receiver”, http://www.ert.rwth-
aachen.de/Projekte/VLSI/soc.html.

[6] Goldstein, S., Schmit, H., Budiu, M., Cadambi, S., Moe, M
and Taylor, R. “PipeRench: An Architecture and Compiler
for Reconfigurable Computing”, IEEE Computer, Vol. 33,
No. 4, pp 70-77, April 2000.

[7] McMurchie, L. E. and Ebeling, C. “PathFinder: A
Negotiation-Based Performance-Driven Router for

FPGAs”, ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pp. 111-117, 1995.

[8] Synopsys, Inc., “Epic Tools User Manual”

[9] Synopsys, Inc., “Synopsys Online Documentation”, version
2000.05, 2000.

[10] Tanner Research, Inc., “Tanner CES Products”,
http://www.tanner.com/CES/products/files_now/dit_std_ce
ll.htm.

[11] Weste, Neil H. E. and Eshraghian, Kamran Principles of
CMOS VLSI Design: A Systems Perspective, Reading,
Massachusetts: Addison-Wesely Publishing Company,
1993.

