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Abstract
The time it takes to reconfigure FPGAs can be a significant
overhead for reconfigurable computing.  In this paper we
develop new compression algorithms for FPGA
configurations that can significantly reduce this overhead.
By using runlength and other compression techniques, files
can be compressed by a factor of 3.6 times.  Bus transfer
mechanisms and decompression hardware are also
discussed.  This results in a single compression
methodology which achieves higher compression ratios
than existing algorithms in an off-line version, as well as a
somewhat lower quality compression approach which is
suitable for on-line use in dynamic circuit generation and
other mapping-time critical situations.

Target Architecture
These compression techniques were developed for the
Xilinx XC6200 [Xilinx97].  This FPGA is an SRAM based,
high performance Sea-Of-Gates FPGA optimized for
reconfigurable computing.  All configuration resources are
accessed by addressing the SRAM through a standard
memory interface.  The Xilinx XC6200 series are partially
reconfigurable devices.  The configuration file consists of a
set of address/data pairs.  Since the device is partially
reconfigurable, the target addresses written to may not be
contiguous.  Therefore, if the data is compressed the
addresses must be compressed as well.

Compression Considerations
The data compression for FPGA configurations must
normally be lossless.  The chosen compression strategy
must be able to completely recover the exact data that was
compressed.  The compression technique chosen must
allow for online decompression.  Although compression
will normally occur offline, where the entire configuration
sequence is available, the entire compressed configuration
sequence will not be available upon decompression.
Finally, the compression technique may reorder the data,
with some restrictions.

Run-Length Compression

A variation of Run-Length encoding perfectly meets the
requirements for the address compression.  A series of
addresses with a common offset can be compressed into a
codeword of the form: base, offset, length.  Base is the base

address, offset is the offset between addresses, and length is
the number of addresses beyond the base with the given
offset.    The configuration data sometimes repeats data
values many times, allowing the compression of data
streams with Run-Length encoding as well, although the
compression may not be as great.

Lempel-Ziv Compression

Lempel-Ziv takes advantage of repetitive series of data,
replacing them with a single codeword.  This codeword
will tell when the series previously occurred, how long it is,
and will give a new piece of data that is not part of the
series.  The codeword will consist of the form: pointer,
length, and lastSymbol.  The pointer will represent where
the start of the series previously occurred within a window
of time. This will meet the requirements for the data
compression.  This cannot be used for the address
compression since the address stream has almost no
repetition.

Compression Strategies for Address/Data
Pairs
1) Basic Run-Length: Compresses the address and data

stream using runlength compression.
2) Lempel-Ziv: Compresses the address stream using

runlength and the data stream using Lempel-Ziv.
3) Run-Length with Reordering: Reorder the

address/data pairs in a more optimal manner.   
4) Adaptive Run-Length Reordering: This strategy is

similar to strategy #3 except that the optimal codeword
and parameter sizes can be chosen on a configuration
by configuration basis.  The particular combination
used is programmed into the hardware prior to
configuration.

Bus Transactions

Multiplexing of the Address Bus

Since the addresses must be compressed and sent in
addition to the data, our compression strategies use both the
address and data buses to send the compressed codewords.

Variation in Codeword Parameter Sizes

Through experimentation, we will determine how to divide
up the available bits within a codeword into each field.  In
addition, we will vary the size of the codewords, in attempt
to find the optimal combination.



Experiments
The algorithms described above were implemented in C++,
and were run on a set of benchmarks collected from current
XC6200 users.  The results are given in the left portion of
the table below, which lists the number of bus transactions
required for address and data compression.  Also listed is

the overall compression ratio, which is the ratio of original
file size to compressed file size.  Given these results it is
clear that Reordering Runlength is the preferred approach,
since it achieves better compression results than the other
approaches while requiring much simpler hardware
decompressors than Lempel - Ziv.

Basic Runlength Lempel - Ziv Reorder Runlength Adaptive Reorder Wild
CalFile Length Addr Data Comp Addr Data Comp Addr Data Comp Addr Data Comp Comp

counter 198 56 37 2.13 56 42 2.02 58 31 2.22 57 25 2.41 1.88
parity 208 7 21 7.43 7 18 8.32 14 14 7.43 8 14 9.45 7.43
adder4 213 53 34 2.45 53 36 2.39 59 31 2.37 56 25 2.63 2.21
zero32 238 22 27 4.86 22 22 5.41 28 22 4.76 22 20 5.67 4.18
adder32 384 12 135 2.61 12 29 9.37 29 10 9.85 26 10 10.67 5.26
smear 695 135 183 2.19 135 136 2.56 210 68 2.50 210 61 2.56 2.28

adder4rm 907 331 264 1.52 331 233 1.61 419 70 1.85 417 67 1.87 1.61
gray 1200 371 388 1.58 371 353 1.66 592 80 1.79 587 79 1.80 1.85
top 1366 597 489 1.26 597 408 1.36 810 126 1.46 772 118 1.53 1.41

demo 2233 337 277 3.64 337 224 3.98 527 34 3.98 494 34 4.23 4.1
ccitt 2684 295 297 4.53 295 222 5.19 484 35 5.17 430 35 5.77 5.82

t 5819 972 769 3.34 972 602 3.70 1568 55 3.59 1534 55 3.66 5.51
correlator 11001 2513 4162 1.65 2513 1761 2.57 2665 144 3.92 2621 144 3.98 5.86

Sum 27146 5701 7083 5701 4086 7463 720 7234 687
Geometric Mean 2.64 3.20 3.34 3.60 3.28

Table 1.  Overall comparison of complete compression algorithms.  The “Wild” column represents our previous
wildcard based compression algorithm [Hauck98]

Conclusions
In this paper we have presented algorithms, communication
methodologies, and hardware support for accelerating
reconfiguration via compressing datastreams.  The
algorithms include techniques for harnessing runlength
encoding and Lempel - Ziv approaches to the unique
features of FPGA configurations.  The bus formats and
parameter settings provide efficient communications of
these items, allowing for relatively simple hardware,
embedded in the FPGA architecture, to perform the
decompression. Our Adaptive Runlength algorithm
provides significant compression results, reducing
configuration size (and thus bandwidth requirements) by a
factor of 3.60.  Faster on-line algorithms can also use this
hardware to achieve a compression ratio of 2.64.  Such an

on-line algorithm can be used for dynamic circuit creation
and other situations where configuration compile time is a
significant concern, including many applications of
reconfigurable computing.  Combined, this provides a
complete and efficient compression suite for FPGA
configuration management.
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