
Reading: Sec. 4.1–4.8 sec. 10.1–10.6
Ref: Saleh and Teich, "Fundamental of Photonics," Ch. 5 Wiley

* Use geometrical optics when \(\lambda < d \).
 If \(\lambda \geq d \), use wave optics

* 1-D Wave Equation (study Sec. 4-1)
 - How to describe a traveling wave mathematically?
 \[y = f(x \pm vt) \] represents traveling towards \(+x \) direction
 - Examples:
 \[y = A \sin(x - vt) \]
 \[y = A(x + vt)^2 \]
 \[y = e^{k(x - vt)} \]
 - Satisfy 1-D wave equation:
 \[\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} \]
 - Quiz:
 \[y = 2.85 \left(0.75x + 2\pi t \right) \] "\(x \)" direction.
 \[v = \frac{\pi}{3} \]
 \[y = e^{-(0.009x^2 + 0.02e^{xt} - 4.9t^2)} \] "\(-x \)" direction
 \[v = 7/0.3 \]
 \[y(x,t) = A \left(Bx^2 - t \right) \]
 \(x \) Not a traveling wave.

* Exercise: Lorentzian pulse
 \[y(x,t) = \frac{b^2}{a^2 + (x - x_0)^2} \]
 At later time \(t \):
 \[y(x,t) = \frac{b^2}{a^2 + [x + v(t-t_0) - x_0]^2} \]
 \[\approx \frac{b^2}{a^2 + [x - x_0 + v(t-t_0)]^2} \]
* Harmonic Waves (study Sec. 4.2.1)

\[y = A \sin \left(k(x \pm vt) + \phi_0 \right) \] or \[A \cos \left(k(x \pm vt) + \phi_0 \right) \]

\[k = \frac{2\pi}{\lambda} \] : Propagation constant

General form of harmonic waves:

\[y = A \sin \left(kx + \omega t + \phi_0 \right) \] or \[A \cos \left(kx + \omega t + \phi_0 \right) \]

\[\omega = 2\pi f = \frac{2\pi}{T} \] : Angular frequency

* Complex Harmonic Wave Functions

(study Sec. 4.3 to 4.7)

- \[\sin (A + B) \neq \sin A + \sin B \] or \[\sin A \cdot \sin B \]

\[e^{i(A+B)} = e^{iA} \cdot e^{iB} \]

- Express a harmonic wave by \[Y(x,t) \]

\[Y = A e^{i(kx - \omega t)} \]

\[\text{Re} (Y) = A \cos (kx - \omega t) \]

\[\text{Im} (Y) = A \sin (kx - \omega t) \]

Take real or imaginary part for physical quantities

- Plane wave.

In \(x \)-direction, \[Y = A \sin (kx - \omega t) \]

In any direction,

\[Y = A \sin (k \cdot \mathbf{r} - \omega t) \]

In complex form,

\[Y = A e^{i(k \cdot \mathbf{r} - \omega t)} \]

- Spherical wave.