Modeling Active and Passive Microwave Remote Sensing of Multilayer Dry Snow using a Coupled Snow Hydrology-Microwave Model

Graduate student: Ding Liang1, Xiaolan Xu1, Konstantinos Andreadis2
Advisor: Leung Tsang1, Dennis P. Lettenmaier2, Edward G. Josberger3
1Dept. of Electrical Engineering, 2Dept of Civil and Environmental Engineering, University of Washington, 3USGS

Abstract

NASA is considering the Snow and Cold Land Processes (SCLP) mission that will provide the first high-resolution global sampling of snow water storage to explore its variability and effect in the global water cycle. The resolution is 100-m for snow-process variability and 5-km for mesoscale weather. The mission uses the dual 20-GHz frequency radar (X-, Ka) measurements and dual high frequency radiometer (K-, Ka) measurements. At the same time, the Cold Regions Hydrology High-resolution Observatory (CoReH2O) mission is being considered by the European Space Agency (ESA) with the objective to improve the modeling and prediction of water balance and stream flow, water and energy cycles at high latitudes, and the relation to climate change and variability. The mission employs twin frequency synthetic aperture radars (9.6 and 17.2 GHz). We report on our work in the physical theory of the passive and active microwave remote sensing.

Hydrology Model – VIC

VIC is a macroscale hydrology model that essentially solves the energy and water balance over a gridded domain. It is distinguished from other land surface models by the parameterization of subgrid variability of soil moisture, precipitation, topography and vegetation. The snow modeling component consists of a multiple layer formulation that builds on a number of existing models. The purpose of the model is to build an adequately complex model that is computationally efficient and able to accurately reproduce both the horizontal and vertical variability of snowpacks at the spatial scales of interest. The maximum number of layers in the modeled snowpack is a user-defined input in order to accommodate for different simulation scenarios. Each time there is new snowfall a new layer is added on top of the snowpack. The model then solves the snowpack energy balance as a set of nonlinear equations. The following figure shows snowpack temperature profiles at the LSOS site (from CLPX), simulated by 1-layer and 5-layer VIC as well as the observed one.

Microwave Model – QCA/DMRT and NMM3D/DMRT

The dense media radiative transfer (DMRT) theory has been applied in studying both passive and active microwave remote sensing signatures [1], [2]. Because snow is a dense medium in which the ice particles lie in close proximity of each other, the particles do not scatter independently. The DMRT theory takes into account the collective scattering effects of the particles by including the wave interactions among the particles. We couple the DMRT with the multilayer Variable Infiltration Capacity (VIC) by using snow parameters that are predicted by VIC in the DMRT model.

The QCA/DMRT model gives different results when compared to classical independently scattering theory:
(1) The extinction saturates at high fractional volume
(2) The scattering coefficient has a frequency dependence that is weaker than the fourth power
(3) The mean cosine of the phase matrix is not zero
(4) The phase matrix shows more forward scattering and has a larger mean cosine than the classical Mie scattering theory of the same grain size.

We also use Numerical Maxwell model (NMM3D) to calculate the phase matrix of dense media. The position of the particles are generated by random shuffling and bonding. The concentration of the particles can be up to 40%. We solved Maxwell Equations in forms of Foldy-Lax multiple-scattering equations numerically.

\[E_f = E_i + \sum_n E_i \frac{M_n}{M_n + 1} \]

Compared to QCA, NMM3D:
(1) The final induced dipoles are not aligned with incident field because of the near field interactions.
(2) The cross-polarization in the phase matrix is non-zero, which provides more cross polarization backscattering

To solve the dense media radiative transfer equation for layered snow, we decompose the specific intensity in the equation as a sum of the reduced intensity and diffuse intensity. The reduced intensities in every layer can be solved analytically. The diffuse intensities are decomposed into Fourier series in the azimuthal direction, and then using the eigen-quadrature approach solves every harmonic. We consider full multiple scattering effects with 16 Gaussian quadrant angles. The same 16 angles are used in every layer.

Comparison with Ground Measurement

The model is applied to compare with measurements from the Cold Land Processes Field Experiment CLPX Ground-based Microwave Radiometer (GBMR). We illustrate the model simulation of brightness temperature at 18GHz and 36GHz for different multi-layer snowpack structures. The snow thickness, densities and grain sizes vary among different layers. Vertical profiles of snow properties needed to drive the model were simulated by the newly developed multilayer VIC snowpack model. For the active data, our simulation data agree with both airborne polarimetric scanning radiometer (PSR) and airborne polarimetric Ku-band scatterometer (POLSCAT) data at Fool-Creek, Fraser.

Conclusion

In this study we evaluate a coupled snow hydrology (Variable Infiltration Capacity, VIC) and microwave emission (Dense Media Radiative Transfer, DMRT) model. The effect of multilayer has been accounted in both models to simulate the snow structure. With the same set of multilayer snowpack profile, the coupled VIC and QCA/DMRT model are shown to agree with co-polarization backscattering coefficients and all 4 channels of brightness temperature observations simultaneously at LSOS.

Bibliography