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Abstract—In this work, we investigate the security of anony-
mous wireless sensor networks. To lay down the foundations of
a formal framework, we develop a new model for analyzing
and evaluating anonymity in sensor networks. The novelty of
the proposed model is twofold: first, it introduces the notion
of “interval indistinguishability” that is stronger than existing
notions; second, it provides a quantitative measure to evaluate
anonymity in sensor networks. The significance of the proposed
model is that it captures a source of information leakage that
cannot be captured using existing models. By analyzing current
anonymous designs under the proposed model, we expose the
source of information leakage that is undetectable by existing
models and quantify the anonymity of current designs. Finally, we
show how the proposed model can lead to a general and intuitive
direction for improving the anonymity of current designs.

I. INTRODUCTION AND RELATED WORK

In sensor networks, nodes are deployed to capture and report
relevant events. A topic that has been drawing increasing
research attention in wireless sensor networks is source lo-
cation privacy [1]–[7]. (Source anonymity and source location
privacy will be used synonymously for the rest of the paper.)
Given the adversary’s knowledge of the locations of sensor
nodes in a network, determining the individual nodes reporting
the occurrence of real events can translate to the exposure
of the location of the real events themselves. Applications
in which hiding the occurrence of real events can be critical
include, but are not limited to, the deployment of sensor nodes
in battlefields and the classic Panda-Hunter Game [1], [2], [5],
[6].

In such applications, where source location privacy is of
critical importance, special attention must be paid to the design
of the node transmission algorithm so that monitoring sensor
nodes does not reveal critical source information. One of the
major challenges for the source anonymity problem is that it
cannot be solved using traditional cryptographic primitives.
Encrypting nodes’ transmissions, for instance, can hide the
contents of plaintext messages, but the mere existence of
ciphertexts is indicative of information transmission.

In the presence of a global adversary, who is able to monitor
the traffic of the entire network, routing-based solutions has
been shown to leak private source information [4]. An intuitive
approach to report a real event without revealing, to a global
adversary, its location information is to program nodes to
transmit fake messages even if there are no real events to be
reported [4]. When real events occur, they can be embedded

Fig. 1. An illustration of the intuitive approach. The node is programmed
to transmit fake messages so that real events are hidden within the fake
transmissions.

within the transmissions of fake messages. This intuitive
approach, however, does not completely solve the location
privacy problem. When fake transmissions are scheduled ac-
cording to certain probabilistic distributions, statistical analysis
can be used to distinguish between real and fake transmissions
if real events are transmitted as they arrive. This intuitive
approach is illustrated in Figure 1.

By realizing the problem with the intuitive approach, the
solution becomes trivial. As opposed to transmitting real
events as they occur, they can be transmitted instead of the
next scheduled fake one. For example, sensor nodes can be
programmed to transmit an encrypted message every minute. If
there is no event to report, the node transmits a fake message.
If a real event occurs within a minute from the last transmis-
sion, it must be delayed until exactly one minute after the last
transmission has elapsed. This algorithm, trivially, provides
source anonymity since an adversary monitoring a node will
observe one transmission every minute and, assuming the
semantic security of the underlying encryption, the adversary
has no means of distinguishing between fake and real events.
Figure 2 depicts an example of this trivial solution.

The trivial solution, however, has a major drawback: re-
porting real events must be delayed until the next scheduled
transmission. (In the above example, the average latency of
transmitting real events will be half a minute.) When real
events have time-sensitive information, this latency might
be unacceptable. Reducing the latency of transmitting real
events by adopting a more frequent scheduling algorithm
is impractical for most sensor network applications. This is
mainly because sensor nodes are battery powered and, in
many applications, are unchargeable. Consequently, a more



Fig. 2. An illustration of the trivial solution. Real event must be delayed
until the next scheduled fake transmission.

frequent scheduling algorithm can exhaust nodes’ batteries
rather quickly, rendering sensor nodes useless.

Furthermore, a transmission scheduling based on any pre-
specified probabilistic distribution, not necessarily determinis-
tic as in the above example, will suffer the same problem
discussed above: slower rates lead to longer latencies and
faster rates lead to shorter battery lives. Consequently, practical
solutions are designed to achieve the objective of source
anonymity under two main constraints: minimizing latency
and maximizing the lifetime of sensors’ batteries. To make
things even more complex, the arrival rate and distribution
of real events can be time varying and unknown in advance.
Clearly, in the trivial solution, no pre-specified probabilistic
distribution for fake transmissions can satisfy both constraints
for arbitrary time-variant distribution of real event arrivals.

The current state of the art in designing anonymous sensor
networks works as follows. In the absence of real events, nodes
are programmed to transmit independent identically distributed
(iid) fake messages according to a certain distribution with a
certain rate. However, unlike the trivial solution, real events
are transmitted as soon as possible (earlier than the next pre-
scheduled fake transmissions) under the following condition:
the distribution of the entire message transmissions (fake and
real) of each node is “statistically” similar to the transmission
of only fake messages. (Statistical similarity is achieved via
the use of statistical goodness of fit tests that determine if
a sequence of data samples follows a certain probabilistic
distribution.) Consequently, to a global adversary monitoring
the network, the time between any two transmissions (real
or fake) will follow the same distribution of fake messages
only. The current consensus is that this approach provides
dependable solutions for the source anonymity problem in
wireless sensor networks [5]–[9].

In this paper, we take a closer look at the current state-of-
the-art in designing anonymous sensor networks. The driving
motive behind this work is the key observation that, although
an adversary might not be able to distinguish between real and
fake transmissions, there still exists a source of information
leakage that can affect the security of such designs. The
inability to detect the source of information leakage in the
current approach is not a result of false statements claimed
in previous proposals; the lack of a formal framework that
properly models anonymity in wireless sensor networks is the
main reason for the inability to detect such a vulnerability. The

main purpose of this work is to provide such a framework.

A. Our Contributions

We summarize our contributions by the following points.
• We detect a source of information leakage in the current

designs that can undermine their anonymity.
• We introduce the new notion of interval indistinguishabil-

ity to analyze anonymity in wireless sensor networks. The
new notion is stronger than existing notions and captures
the source of information leakage that is undetectable by
existing notions.

• We propose a quantitative measure to evaluate anonymity
in sensor networks.

• We analyze, both analytically and via simulation, the
current state-of-the-art in designing anonymous sensor
networks and quantify the amount of information leakage
when the current approach is analyzed under the proposed
model.

• Based on our model, we discuss a new direction to
enhance the anonymity of the current state-of-the-art.

II. MODELING ANONYMITY

In this section we introduce our anonymity model for wire-
less sensor networks. Intuitively, anonymity should be mea-
sured by the amount of information about sources’ locations
an adversary can infer by monitoring the sensor network. The
challenge, however, is to come up with an appropriate model
that captures all possible sources of information leakage and
a proper way of quantifying anonymity in different systems.

A. Network and Adversarial Models

We assume that communications take place in a network of
energy constrained sensor nodes. That is, nodes are assumed
to be powered with unchargeable batteries, thus, conserving
nodes energy is a design requirement. Nodes are also equipped
with a semantically secure encryption algorithm, so that
adversaries are unable to distinguish between real and fake
transmission by means of cryptographic tests. When a node
detects an event, it places information about the event in a
message and broadcasts an encrypted version of the message.

Our adversary is similar to the one considered in [4],
[5], in that it is external, passive, and global. By external,
we mean that the adversary does not control any of the
nodes in the network and also has no control over the real
event process. By passive, we mean that the adversary is
capable of eavesdropping on the network, active attacks are
not considered. By global, we mean that the adversary can
simultaneously monitor the activity of all nodes in the network.

As opposed to a global adversary, a local adversary is only
capable of eavesdropping over a small area, typically the area
surrounding the base station, and attempts to determine the
source of traffic by examining the packet routing information
or trying to follow the packets back to their source. Protocols
that attempt to disguise the source of traffic through routing,
while highly secure against local adversaries, do not defend
against global adversaries [4].
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We also assume that the adversary is capable of storing a
large amount of message traffic data and performing complex
statistical tests. Furthermore, the adversary is assumed to
know the distribution of fake message transmissions. The only
information unknown to the adversary is the timing when real
events occur.

B. Event Indistinguishability (EI)

Currently, anonymity in sensor networks is modeled by the
adversary’s ability to distinguish between individual real and
fake transmissions by means of statistical tests. That is, given a
series of nodes’ transmissions, the adversary should not be able
to distinguish, with significant confidence, which transmission
carries real information and which transmissions is fake.

Consider, however, an adversary observing the sensor net-
work over multiple time intervals, without being able to
distinguish between individual fake and real nodes’ transmis-
sions. Assume, further, that during a certain time interval the
adversary is able to notice a change in the statistical behavior
of transmission times of a certain node in the network.
This distinguishable change in transmission behavior can be
indicative of the existence of real activities reported by that
node, even though the adversary was unable to distinguish
between individual transmissions.

For example, consider a sensor network deployed in a bat-
tlefield. For a certain time interval, there were no activities in
the vicinity of a sensor node the enemy is monitoring. Hence,
by design, the node has been transmitting fake messages for
the duration of that time interval. Assume now that a moving
platoon is in the vicinity of this node and the node started
to report location information about the moving platoon. It is
unnecessary to distinguish between individual transmissions to
infer the existence of the moving platoon. That is, the ability
to distinguish between the time interval when no real activities
are reported and the time interval when the platoon is in the
vicinity of the sensor node is sufficient to infer private location
information.

Consequently, in many applications, modeling source
anonymity in sensor networks by the adversary’s ability to
distinguish between individual transmissions is insufficient to
guarantee location privacy. This fact calls for a stronger model
to properly address source anonymity in sensor networks.
Before we proceed, we formally define the currently adopted
notion to model anonymity, namely, event indistinguishability.

Definition 1 (Event Indistinguishability - ‘EI’): Events re-
ported by sensor nodes are said to be indistinguishable if the
inter-transmission times between them cannot be distinguished
with significant confidence.

C. Interval Indistinguishability (II)

The main goal of source location privacy is to hide the
existence of real events. This implies that, an adversary
observing a sensor node during different time intervals, in
which some of the intervals include the transmission of real
events and the others do not, must not be able to determine
with significant confidence which of the intervals contain real

traffic. This leads to the notion of interval indistinguishability
that will be essential for our anonymity formalization.

Definition 2 (Interval Indistinguishability - ‘II’): Let IF
denotes a time interval with only fake event transmissions (call
it the “fake interval”), and IR denotes a time interval with
real event transmissions (call it the “real interval”). The two
time intervals are said to be statistically indistinguishable if
the distributions of inter-transmission times during these two
intervals cannot be distinguished with significant confidence.

To model interval indistinguishability, we propose the fol-
lowing game between a challenger C (the system designer)
and an adversary A.

Game 1 (Modeling Interval Indistinguishability):
1) C draws a bit b ∈ {0, 1} uniformly at random.
2) C chooses two intervals I0 and I1, in which Ib is a real

interval and the other one is fake.
3) C gives I0 and I1 to A.
4) A makes any statistical test of her choice on I0 and I1

and outputs a bit b′.
5) If b′ = b, A wins the game.

Although giving the adversary two intervals might seem too
strong of an assumption, it is actually a practical one. To see
this, note that the adversary can observe two time intervals,
for example. If the two time intervals are distinguishable, then
it is likely that one of them is a real interval and the other is
fake. Moreover, since nodes are not tamper-resistant in most
application, an adversary capturing a node in the network can
discover the distribution of fake intervals. Even if nodes are
tamper-resistant, an adversary can discover the distribution of
fake intervals by monitoring a node in the absence of real
events. Then, all that is needed is to observe different time
intervals. The more distinguishable a time interval from the
known fake interval, the more likely it is to contain real events.
Therefore, Game 1 is suitable to analyze practical systems.

With Definition 2 and Game 1, we aim to find a security
measure that can formally quantify the anonymity of different
designs. Let σ denote an adversarial strategy for attacking
the system. Let Pr[b′ = b]σ be the adversary’s probability of
winning Game 1 using strategy σ. We quantify the anonymity
of a sensor network against the strategy σ by

Λσ := 1− 2
(

Pr[b′ = b]σ − 0.5
)
. (1)

In the best case scenario, the adversary’s strategy is a pure
random guess, leading to Pr[b′ = b]σ = 1/2 and Λσ = 1
(absolute anonymity). In the worst case, the adversary will
have a strategy with Pr[b′ = b]σ = 1 leading to Λσ = 0 (no
anonymity). Any intelligent strategy will result in a probability
of winning the game belonging to the interval [0.5, 1], leading
to an anonymity measure in the interval [0, 1].

Let Σ be the set of all possible adversarial strategies to
attack the system. Then, the anonymity of the system is:

Λ := min
σ∈Σ

Λσ. (2)

Given Definitions 1 and 2, the relation between event
indistinguishability (EI) and interval indistinguishability (II)
is stated as follows.
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TABLE I
A LIST OF USED TERMS AND NOTATIONS.

Ei The random variable representing the event reported in the ith transmission
Xi The random variable representing the inter-transmission time between the ith and the i+ 1st transmissions
IF A fake interval: an interval consisting of fake events only
IR A real interval: an interval containing some real event transmissions

short inter-transmission times inter-transmission times that are shorter than the mean of the pre-defined distribution
long inter-transmission times inter-transmission times that are longer than the mean of the pre-defined distribution

short-long pattern a short inter-transmission time followed by a long inter-transmission time

Lemma 1: II ⇒ EI.
Proof: Assume a system satisfying interval indistin-

guishability but does not satisfy event indistinguishability.
Then, real and fake transmissions are distinguishable, by
assumption. Therefore, given a fake interval and a real interval,
the real interval can be identified as the one with the real
transmission. A contradiction to the hypothesis that the system
satisfies interval indistinguishability, and the lemma follows.

To show that the proposed notion is stronger than the current
one, it remains to show that event indistinguishability does not
imply interval indistinguishability (II: EI). Section III proves
this fact by providing a counter example.

With the above definition of interval indistinguishability, we
introduce the notion of Λ-anonymity in sensor networks.

Definition 3 (Λ-anonymity): A wireless sensor network is
said to be Λ-anonymous if it satisfies two conditions

1) the beginning and the end of an interval cannot be
distinguishable,

2) the anonymity of the system, as defined in equation (2),
is at least Λ.

The first condition in Definition 3 is necessary to ensure that
there is no distinguishable transition region between intervals.
If such a transition exists, it can lead to anonymity breach.

III. ANALYSIS OF EI-BASED APPROACHES

In this section we analyze, using our proposed model, sys-
tems that were shown to be secure under event indistinguisha-
bility; i.e., EI-based systems. First, we provide theoretical
analysis showing that real and fake intervals can be statistically
distinguishable. Then, we simulate an existing scheme to show
that the theoretical analysis is also practical. We start by
describing the current state-of-the-art, as first proposed in [5].

A. EI-based Approaches

Nodes are designed to transmit fake messages according
to a pre-specified distribution. Furthermore, nodes store a
sliding window of times between consecutive transmissions,
say Xi,Xi+1, · · · ,Xk+i−1, where Xj is the random vari-
able representing the time between the jth and the j + 1st

transmissions and k is the length of the sliding window.
When a real event occurs, its transmission time, represented
by Xk+i, is defined to be the smallest value such that the
sequence Xi, · · · ,Xk+i passes some statistical goodness of
fit tests. That is, an adversary observing the sequence of inter-
transmission times will observe a sequence that is statistically
indistinguishable from an iid sequence of random variables
with the pre-specified distribution of fake transmissions.

However, by continuing in this fashion, the mean will skew
since nodes always favor shorter times to transmit real events.
To adjust the mean, the next transmission following a real one,
Xk+i+1 in this example, will be purposely delayed. Again,
the delay is determined so that the sequence in the sliding
window satisfies some statistical goodness of fit test. Conse-
quently, as shown in [5], an adversary observing the sensor
node cannot differentiate between real and fake transmissions.

B. Theoretical Interval Distinguishability

As discussed in Section II, when an adversary can distin-
guish between real and fake intervals, source location can
be exposed, even if the adversary cannot distinguish between
individual transmissions. In what follows, we give theoretical
analysis of interval indistinguishability in EI-based systems.1

Let Xi be the random variable representing the time be-
tween the ith and the i+1st transmissions and let E[Xi] = µ.
We now examine two intervals, a fake interval and a real one.

1) Fake Interval (IF ): In fake intervals, inter-transmission
times are iid random variables. That is, the Xi’s are iid’s
with mean µ. Therefore, during any fake interval IF , for any
Xi−1,Xi ∈ IF ,

E
[
Xi |Xi−1 < µ

]
= µ. (3)

2) Real Interval (IR): Let Ei be the random variable
representing the event reported in the ith transmission. Then,
Ei can take the values R and F , where R denotes a real
event and F denotes a fake one. Since in general scenarios the
distribution of inter-arrival times of real events can be varying
and unknown beforehand, we will assume that Ei can take
the values R and F with arbitrary probabilities.

Recall that the time between the transmission of a real
event and its preceding fake one is usually shorter than the
mean µ by design (to reduce latency). Recall further that
the time between the transmission of a real event and its
successive one is usually longer than µ by design (to adjust
the ensemble mean). That is, during any real interval IR, for
any Xi−1,Xi ∈ IR,

E
[
Xi |Xi−1 < µ,Ei = R

]
> µ, (4)

and,

E
[
Xi |Xi−1 < µ,Ei = F

]
= µ, (5)

1The vulnerability of [5] to correlation attacks has been informally dis-
cussed in a fast abstract at the DSN 2010 conference [10].
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Fig. 3. An illustration of interval distinguishability in the current approach.

by design. Using equations (4) and (5) we get,

E
[
Xi |Xi−1 < µ

]
= E

[
Xi |Xi−1 < µ,Ei = R

]
· Pr[Ei = R]

+ E
[
Xi |Xi−1 < µ,Ei = F

]
· Pr[Ei = F ] (6)

> µ · Pr[Ei = R] + µ · Pr[Ei = F ] (7)
= µ. (8)

Therefore, by equations (3) and (8), shorter inter-transmission
times followed by longer inter-transmission times are most
likely to occur in real intervals than fake intervals. This
suggests the following strategy to distinguish between fake
and real intervals: given two time intervals I0 and I1, in which
one of them is real and the other one is fake, the adversary
counts the number of short followed by long inter-transmission
times, simply called short-long patterns for the remainder of
the paper. (An inter-transmission time is said to be short if
its length is shorter than the mean µ, and is said to be long
if it is longer than µ.) The interval that has more counts of
short-long patterns is the real interval. Figure 3 illustrates the
pattern of short-long inter-transmission times.

We emphasize that the notion of short-long patterns is
merely a way of representing the class of correlation tests
to distinguish between real and fake intervals. That is, one
can use other correlation tests to distinguish between real and
fake intervals in EI-based approaches. Short-long correlation
patterns are chosen since they are intuitive and easy to analyze.
After all, all that is needed to show that event indistinguisha-
bility is insufficient to model anonymity is a single successful
attack that cannot be captured under event indistinguishability.

C. Case Study

So far, it has been shown that real and fake intervals are
theoretically distinguishable via correlation tests (for example,
the number of short-long patterns). However, it remains to
show that the discrepancy in the number of short-long cor-
relation patterns is large enough to substantially improve the
adversary’s probability of distinguishing between real and fake
intervals, since this cannot be inferred from the analysis.

In what follows, we study the scheme appeared in [5], an
instance of the EI-based approachs, and evaluate its anonymity
using the proposed model. In the scheme of [5], the Anderson-
Darling (A-D) goodness of fit test is used to determine the time
for transmitting real events. Similarly, the A-D test is also
used to implement the mean recovery algorithm. The authors

of [5] used different statistical tests, such as the Kolmogorov-
Smirnov (K-S) test, to show that their design satisfies event
indistinguishability.2

1) Experimental Setup: For a reliable analysis of [5], we
use the same parameters appeared in their paper. The inter-
transmission times between fake transmissions are iid expo-
nentials with mean 20 seconds. Real events arrive according to
a Poisson Arrival process with mean 1/20. The two parameters
of the A-D test are the significance level of the test and the
allowed deviation from the mean which are set to 0.05 and
0.1, respectively.

The experiment was run for 10, 000 independent trials. Each
trial consists of two intervals, a real one IR and a fake one
IF . Every trial starts with a “warmup” period, where 200
iid exponential random variables with mean 20 are drawn to
constitute a backlog to be used in the A-D goodness of fit
test. Then real events start arriving and they are transmitted
according to procedure described earlier (please refer to [5]
for detailed description and algorithms). Each real interval
consists of 50 real events. After the 50th real event has been
transmitted, the fake interval starts for the same amount of
time the real interval lasted.

2) Simulation Results: After running the above experiment
for 10, 000 independent trials, and comparing the number of
short-long patterns in fake and real intervals for each trial, the
following results were found. Out of the 10, 000 trials, real
intervals have more short-long patterns than fake intervals in
6, 818 trials; real intervals have less short-long patterns than
fake intervals in 2, 076 trials; and real intervals have the same
number of short-long patterns as fake intervals in 1, 106 trials.

3) Λ-anonymity Interpretation: Recall that, by equations
(3) and (8), a short-long pattern is most likely to occur in real
intervals than fake ones. Consequently, real intervals are likely
to have more short-long patterns than fake intervals. Indeed,
our simulation results agree with equations (3) and (8).

Consider Game 1 for analyzing interval indistinguishability.
Given two intervals I0 and I1 at which one of them is real and
one is fake, let the adversary’s strategy for deciding which is
which is as follows. Count the number of short-long patterns in
each interval. If both intervals have the same number of short-
long patterns, the adversary decides randomly. If one interval
has more short-long patterns than the other, the adversary
chooses it as the real interval. With this strategy, given the
simulation results provided above, the adversary’s probability
of correctly identifying real intervals, without resorting to
complicated statistical tests, is 0.737. That is, the anonymity
of the system is at most Λ = 0.526.

IV. NEW DIRECTION FOR IMPROVED ANONYMITY

In this section, we discuss a promising direction to improve
anonymity against correlation attacks, and give an example
illustrating how to apply it to the scheme of [5].

2The A-D and K-S tests are popular goodness of fit tests that, given a
sequence of data samples and a desired degree of accuracy, determine whether
the samples follow a certain probabilistic distribution with certain parameters,
within the specified degree of accuracy.
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TABLE II
A QUANTITATIVE COMPARISON OF THE THREE SCHEMES, THE EI-BASED APPROACH OF [5], OUR II-BASED MODIFICATION OF [5], AND THE TRIVIAL
SOLUTION OF SENDING REAL EVENTS INSTEAD OF THEIR SUCCESSIVE SCHEDULED FAKE TRANSMISSIONS. IR > IF DENOTES MORE SHORT-LONG

PATTERNS IN REAL INTERVALS, IR < IF DENOTES MORE SHORT-LONG PATTERNS IN FAKE INTERVALS, WHILE IR = IF DENOTES EQUAL SHORT-LONG
PATTERNS IN REAL AND FAKE INTERVALS. THE SIMULATION RESULTS ARE OBTAINED FROM 10, 000 INDEPENDENT TRIALS.

IR > IF IR < IF IR = IF Anonymity bound
EI-based approach 6, 818 2, 076 1, 106 0.526

Our II-based approach 4, 566 4, 272 1, 162 0.971
Trivial solution 4, 385 4, 318 1, 297 0.993

As can be seen from the analysis in Section III, inter-
transmission times during fake intervals are iid’s, while inter-
transmission times during real intervals are neither indepen-
dent nor identically distributed. In theory, the only way to
guarantee that a sequence of random variables is statistically
indistinguishable from a given iid sequence is to generate it
as an iid sequence with the same distribution.

The notion of interval indistinguishability, suggests a dif-
ferent approach for the design of anonymous sensor networks.
Observe that Definition 2 of interval indistinguishability does
not impose any requirements, such as iid, on the distribution
of inter-transmission times during fake intervals. Therefore,
designing fake intervals with the distribution that is easiest
to emulate during real intervals is the most logical solution.
This idea opens the door for more solutions as it gives more
flexibility for system designers.

To improve the anonymity of EI-based approaches against
correlation attacks, we suggest introducing the same correla-
tion of inter-transmission times during real intervals to inter-
transmission times during fake intervals. In the scheme of
[5], consider the generation of “dummy events” during fake
intervals that are to be handled as if they are real events.
That is, dummy events are generated independently of fake
messages and, upon their arrival, their transmission times are
determined according to the used statistical goodness of fit
test. The purpose of this procedure is to introduce the same
correlation into fake intervals.

To test our approach, we ran the same simulation of
Section III with one major difference. To make fake intervals
possess the same correlation of real intervals, we introduced
dummy events in fake intervals. Dummy events were generated
according to iid Gaussian inter-arrival times with mean 10
seconds and a variance of 150. Note the distinction between
fake messages and dummy events. Fake messages are the ones
transmitted to hide the existence of real transmissions, while
dummy events are the ones generated, during fake intervals
only, to resemble the existence of real events. Note also that
the inter-arrival distribution of dummy events is purposely
different than the inter-arrival distribution of real events to
count for the general case of unknown distribution of real
events inter-arrivals. The A-D test is used to determine the
transmission times of dummy events, just as if they were real
events.

Table II summarizes our simulation results. Observe the
improvement in anonymity against correlation attacks in our
modified version. We emphasize, however, that this is not
meant to be a complete solution for anonymous systems. Its

only purpose is to exemplify the idea of introducing the same
correlation patterns to fake intervals in the scheme of [5]. In
fact, with this approach, we believe interval indistinguisha-
bility can be achieved without resorting to computationally
cumbersome statistical tests. This will be the main focus of
future research.

V. CONCLUSION AND FUTURE WORK

In this paper, we provided a statistical framework for
modeling, analyzing, and evaluating anonymity in sensor net-
works. We introduced the notion of interval indistinguisha-
bility, proved that it implies the currently adopted model
(event indistinguishability), and showed that it captures the
source of information leakage that was not captured by event
indistinguishability (correlation tests). We analyzed an EI-
based approach, which was shown to provide anonymity
under event indistinguishability, and quantified its information
leakage when analyzed under our proposed model. Finally, we
proposed a modification to existing solutions to improve their
anonymity against correlation attacks.

Future extensions to this work include taking advantage of
the key point that fake intervals are not restricted to have
iid inter-transmission times to design an efficient system that
satisfies the notion of interval indistinguishability, without
resorting to computationally cumbersome statistical tests.
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