
Sub Gemini: Identifying Sub Circuits using a Fast
Subgraph Isomorphism Algorithm

Miles Ohlrich, Carl Ebeling, Eka Gintingt, and Lisa Sather

Computer Science & Engineering Department

University of Washington

Seattle, WA 98145

Abstract - The problem of finding subcircuits in a

larger circuit arises in many contexts in computer-aided

design. This is a problem currently solved using ad hoc

techniques that rely on the circuit technology and im-

plementation details. For example, channel graphs and

signal flow are often used to extract simple gates from

a transistor layout. Such techniques, however, do not

generalize to different subcircuit structures and do not

transfer to other technologies. We present a technology-

independent algorithm for this problem based on a so-

lution to the subgraph isomorphism problem. Although

this problem is known to be NP-complete, our solution

is very fast in practice for real circuits. We describe the

algorithm, which uses an extension of the graph parti-

tioning algorithm used by Gemini [3] for graph isomor-

phism, and present experimental results that show that

the typical running time for large CMOS circuits is ap-

proximately linear in the total number of devices within

the subcircuits being matched.

I. INTRODUCTION

The subgraph isomorphism problem appears in many contexts

related to circuit design. Perhaps the most common instance is

identifying a related collection of interconnected primitive devices

in a circuit as a single high-level component, For example, con-

verting a transistor netlist into a gate netlist involves finding the

subcircuits representing gates and replacing them with the corre-

sponding gates, This is a very important task and many special-

ized algorithms have been devised to perform it [1, 577]. However,

these rely on the specific characteristics of the technology or cir-

cuits being transformed and are not easily applied to different

technologies or circuit types such as analog circuits. Moreover,

these techniques rely on assumptions about the subcircuits being

extracted and do not generalize to allow arbitrary subcircuits to

be found.

We present a solution to the subgraph isomorphism problem

as a general technique that is applicable across technologies and

circuit domains. BY avoiding use of any specific knowledge about

the underlying technology or semantics of the target circuits, the

algorithm is truly technology-independent — any circuit which

cm be described as a set of interconnected devices can be han-

dled by our algorithm. Although subgraph isomorphism is known

to be NP-complete and therefore intractable in general, circuits

have sufficient structure to allow an almost linear time solution in

practice. On the surface, this algorithm is similar to the graph iso-

morphism algorithm used by programs such as Gemini [3]. How-

ever, the labeling procedure used for subgraph isomorphism is

necessarily very different from that used for graph isomorphism

for if labels are not computed sub iect to strict constraints, they

This research was funded in part by the Defense Advanced Research

Projects Agency under Contract NOOO 14-J-91-4041. Carl Ebeling was

supported in part by NSF Presidential Young Investigator Awards, with

matching funds provided by IBM Corporation and Sun Microsystems.

Miles Ohlrich was supported by a National Science Foundation Graduate

become meaningless. On the other hand, if too many constraints

are placed on the labels then they contain too little information.

Many other problems can make use of a solution to the sub-

graph isomorphism problem. Finding circuit subgraphs plays a

key role in constructing a hierarchical representation of a circuit

from a flat representation[6]. Matching circuits hierarchically sim-

plifies the problem of identifying the precise location of errors and

also allows one to efficiently check incremental changes.

One may also use subgraph isomorphism to automatically re-

view circuits for the use of questionable circuit constructs. Such

rule checks currently use programs with built-in knowledge of

these constructs. A general algorithm, however, allows these con-

structs to be described as circuits in a library which can be easily

extended as necessary.

Another application arises in the area of technology mapping,

which covers a circuit graph with components from a library. Cur-

rent techniques rely on tree-covering algorithms, which require

that both the input circuit and library components be represented

as trees. A general subgraph isomorphism algorithm would allow

one to find all possible coverings for general component graphs,

including those with feedback and reconvergent fanout.

We have implemented our subgraph isomorphism algorithm in

a program called Sub Geminz. The SubGemini algorithm works in

two phases: In Phase I, SubGemini identifies all possible locations

of the subcircuit in the main circuit. It does this by applying a

partitioning algorithm to both circuits in order to choose a key

vertex, K, in the sub circuit and identify all possible vertices in

the main circuit graph that might match the key vertex. This

set of vertices is called the candidate vector, CV. Phase I acts

as a filter that tries to reduce the number of instances that need

to be checked; Later, Phase II will check each instance in order

to determine if it is part of a subcircuit. In the best case, the

candidate vector includes only true inst antes of the sub circuit,

but Phase I is guaranteed to find all possible candidates. Phase I

is discussed in detail in section III.

In Phase II, SubGemini verifies whether there is an actual

subcircuit at each location indicated by the candidate vector. It

examines each vertex c in the candidate vector and attempts to

find a mapping between vertices in the subcircuit graph and ver-

tices in the main circuit graph, such that K matches c. This is

done by initially postulating a match between K and c, labeling

the two vertices with a unique label. Starting from this first label,

the algorithm simultaneously labels both the main circuit and the

subcircuit such that labels of vertices match if and only if there

is a valid mapping between the two graphs. If this procedure

finds matching labels in the main circuit for all the vertices in

the sub circuit, then a subcircuit has been found. Otherwise, the

candidate vertex was a false candidate. Phase II is discussed in

detail in section IV.

We first introduce some terminology and definitions that will

be used throughout the paper. Then we discuss the actual im-

plementation of the algorithm. Then we discuss several optimiza-

tion and special cases that arise in circuits and how these may be

handled. Finally, we give the results for SubGemini for a varietv

Fellowship. ,, of CMOS circuit examples.

t Now at Carnegie-Mellon University. 30th ACM/IEEE Desig; ~utomation Conference@
Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct cornrnerciaf advantage, the

ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. @1993 ACM 0-89791-577-1/93/0006-0031 1.50

II. PRELIMINARIES

SubGemini uses the same circuit graph model and similar

labeling procedure as that described in [3, 4] for Gemini. We

review these briefly before describing the SubGemini algorithm.

SubGemini represents circuits as graphs as shown in Fig. 1 and

Fig. 2. A circuit graph is an undirected bipartite graph with de-

vices, represented by squares, forming one set of vertices, and nets

(wires), represented by circles, forming another set. A connection

between two devices is made by connecting each device vertex

in the circuit’s graph representation to a net vertex. Explicitly

representing nets as vertices in the graph reduces the number of

edges required to represent the full interconnection of JV device

terminals from JV(lV – 1)/2 to N. Additionally, it exposes the

structure of the circuit to the partitioning algorithm.

Devices may represent either primitive components such as

transistors, capacitors, or higher-level devices such as adders or

register files. Each device v has a type, type(v), which distin-

guishes devices according to their function. A device also has a

set of terminals through which it connects to nets. The terminals

of a device are divided into sets of equivalence classes that repre-

sent the interchangeability of device connections. A transistor, for

example, has one gate terminal and two source/drain terminals;

this implies that nets connected to the source/drain terminals may

be interchanged without affecting the circuit’s function. Further-

more, we refer to the number of devices connected to a net n as

degree(n).

SubGemini, like Gemini, uses a partitioning algorithm to find

an isomorphism mapping between two circuits. Partitioning is

done so that equivalent vertices are contained in the same par-

tition. Initially vertex invariants such as device type and net

degree are used to partition the vertices. Because of the small

number of different invariants, the initial partitioning using these

invariants divides both graphs into only a few partitions. In a

CMOS transistor netlist, for example, the device vertices will be

divided into only two partitions: N-transistors and P-transistors.

Partitions are then refined iteratively by using the information

about the neighboring vertices of a vertex to classify the vertex

more precisely. If partitioning proceeds in the same manner in

both graphs, an isomorphism ensures that the partitions in the

two graphs will match. Finding a partitioning with only singleton

partitions gives a complete isomorphism mapping.

Partitioning is done implicitly via a labeling algorithm. Ver-

tices are labeled using the vertex invariants and the labels are

used to classify the vertices into partitions. Partitions are refined

by relabeling each vertex by combining the previous label of the

vertex wit h the labels of neighboring vertices. In practice, we use

integers to approximate exact labels and use the labeling func-

tion shown in Fig. 3. It can be shown that this labeling gives

the same result as exact labels with a very high probability. For

a more detailed discussion of labeling, the reader is referred to

[3, 4].

While using the partitioning algorithm is relatively straightfor-

ward when solving graph isomorphism, it does not apply directly

to the subgraph isomorphism problem. The SubGemini algorithm

must restrict the way partitioning is used because the graph and

subgraph do not partition in the same way because they are very

different graphs. The key to the SubGemini algorithm is the re-

stricted way partitioning is done which makes it possible to solve

the subgraph isomorphism problem.

We use G to refer to the main circuit graph and S to refer to the

subgraph. A net in the subgraph, S, may be one of two different

kinds: external or internal. External nets connect devices in the

subgraph to the surrounding graph. Internal nets connect only

32

s: Vdd G: v“

L? i’h
IGND IGND

?

V(M

4

Figure 1. Transistor level representation of example circuit.

one instance of the subgraph in the main graph at the right.

There is

Figure 2. Graph representation of example circuit after initial label-

ing. Net vertices are labeled with their degree; device vertices are labeled

according to transistor type. External vertices in S are already corrupt

(m), as they typically have a smaller degree than their images in G. For

example, see the highlighted vertices above.

oV2

---GHa-G)---
dl’s New Label= dl + S*V] + S*V3 +g*V~

Figure 3. The general relabeling function: The new label of a vertex

depends on the old label of the vertex, the labels of its neighbors, and the

terminal classes through which the vertex is connected to its neighbors.

devices within the subgraph; connections between internal nets

and devices outside the subgraph are forbidden. In Fig. 2, for

example, all nets in S labeled m are external, and the net labeled

2?is an internal net. Handling external nets correctly is important

since they have differing numbers of neighbors in the subgraph

and the main graph.

Finding a subgraph in the graph requires finding an isomor-

phism mapping between the subgraph S and an induced subgraph

G’ in ~. We call this subgraph, L7, the image of S and say that
a vertex g = image(s) if they are isomorphic in the context of ~’

and S. We also say that s and g match if g = image(s).

III. PHASE I - GENERATING THE CANDIDATE VECTOR

In Phase I, SubGemini locates a key vertex in the subgraph,

S, and a candidate vector of vertices in the main graph, ~, which

represent possible images of the key vertex. It does so by means

of an iterative partitioning algorithm that uses the structure of

the subgraph to reduce the size of the candidate vector.

Initially, all vertices in both graphs are partitioned into equiv-

alence classes according to labels based on vertex invariants: All

device vertices are labeled according to their type, and all net

vertices are labeled according to their degree. Vertices are then

relabeled using the labels of neighboring vertices to refine the

partitioning.

This leads to a problem in the context of subgraph isomor-

phism. The image of an external net vertex z in S, may be

connected to additional components in G that lie outside, the im-

age of S. In Fig. 2, for example, the images of the external net

vertices in S are connected to extra components in ~, as noted by

the larger labels in ~ and the dotted lines to indicate additional

connections. The highlighted vertices in Fig. 2 show a specific

example of this.

SubGemini solves this using an additional valid bit for each

vertex in $. This valid bit is marked corrupt if the label of a

vertex in S and its image in ~ may be different because of ex-

ternal connections. External net vertices are marked corrupt at

the initial labeling; all other vertices in S are marked valid. In

Fig. 2, for example, external vertices in S are marked m, to show

that their labels are corrupt. As vertices are relabeled, those with

corrupt neighboring vertices are marked corrupt as well. This

modified labeling procedure guarantees that the following label

invariant holds after each relabeling:

(1) Label Invariant (Phase I): If g in ~ is the image

of s in S, then if s is marked valid, g has the same

label as s.

SubGemini iteratively relabels vertices until either all net ver-

tices or all device vertices in S become corrupt (during any spe-

cific iteration, only vertices of one type become corrupt since the

graph is bipartite). We are left with a number of valid partitions

in S and the corresponding partitions in ~. The smallest of these

partitions is chosen as the candidate vector so that that the least

amount of work has to be done in Phase II. The valid vertex from

S with the same label as that of the candidate partition is chosen

as the key vertex. If multiple valid vertices from S have the same

label at this point, an arbitrary one can be chosen to be K.

Label Invariant (1) guarantees that all the possible images of

K must be in the candidate vector, although there may also be

vertices in the candidate vector that are not images of K.

Fig. 4 shows the example graph after the first relabeling dur-

ing which net vertices have been relabeled. The labels A and B

are computed as shown. During the next iteration, device vertices

will be relabeled, and will all become corrupt because each has

a corrupt net as a neighbor; at this point, the Phase I relabeling

algorithm will halt. The two vertices in ~ marked A will become

the candidate vector, and the vertex in S marked A will become

the key vertex, The vertex labeled B in Fig, 4 cannot be chosen

as the candidate vector, because its label does not match the label

of any vertex in S.

The Phase I relabeling algorithm can avoid unnecessary work

by checking for consistency of partitions at each step. If there

exists a partition P in ~, for example, which has a label that does

2 +sN+sN :

B = 2 + gN + <other umnmtions>

F,gure 4. Graph representation of example circuit after nets am da.

beled. Vertices in G which are marked “-” were removed from considerw
tion as members of the candidate vector during a consistency check after
the initial labeling. The label of vertex B in G does not match the label
of any vertex in S, so it will be removed from consideration during the
consistency check after this relabeling.

not appear in any partition in S, then those vertices in P cannot

have valid images in S, by Label Invariant (1) above, and can be

safely discarded. Moreover, if after any iteration there exists a

partition Pg in ~ which is smaller than the partition P, of valid

vertices in S with the same label, then we can deduce that there

is no induced subgraph in ~ that is isomorphic to S.

Optimized Algorithm for Phase I

Repeat:

Relabel all valid net vertices,

Mark invalid and remove those net vertices in S with invalid

neighbors.

Check for consistency.

If all net vertices are invalidated, exit loop.

Relabel all valid device vertices.

Mark invalid and remove those device vertices in S with

invalid neighbors.

Check for consistency.

If all device vertices are invalidated, exit loop.

Choose the smallest partition in Q to be CV. Choose the first ele.

ment in the corresponding partition in S to be K.

IV. PHASE II. EXPLOFtHfG THE CANDIDATE VECTOR

Upon completion of Phase I, SubGemini has chosen a key ver-

tex, K from the subgraph, S, and has generated a candidate vet.

tor of vertices in the main graph, ~, that might match the key

vertex. During Phase II, SubGemini uses the candidate vector to

know where to look in ~ for subgraphs isomorphic to S. It exam-

ines each vertex c in the candidate vector, attempting to find an

induced subgraph in G isomorphic to S where c = image(K).

A straightforward approach is to match all the vertices of S

to vertices located in ~ by exhaustively searching from the key

vertex as in [6]. This can be very expensive, especially if done in a

depth-first manner since one wrong guess early on can case much

wasted time. SubGemini instead performs an implicit breadth-

first search using a modified partitioning algorithm. This is more

efficient in general because it maximizes the use of the information

about the structure of the subcircuit during the search.

SubGemini does the following procedure for each instance c

from the candidate vector in turn. It first assumes that c is the im-

age of K. It marks these two vertices matched and gives them both

the same random, unique label which does not change. Starting

from this one label, it then iteratively relabels the surrounding

vertices in both graphs.

When relabeling vertices, SubGemini must take care that if a

vertex g in ~ is the image of a vertex s in S, then both s and

g are given the same labels. Because vertices outside ~’, the as-

sumed subgraph inst ante in ~, will pass unwanted information to

other vertices in ~ if their labels are used during relabeling, these

vertices must be excluded from the Phase II relabeling function;

otherwise, the labels of s and g may differ after relabeling.

Therefore, SubGemini keeps track of whether labels are trust-

worthy and only uses those that are. Obviously, the label given

to K and c is trustworthy, as these vertices are assumed to be

matched, However, we still need to define when the labels of

other vertices are safe. SubGemini does this by associating a safe

bit (safe/suspect) for each partition in S and G. A partition of

vertices in ~ is said to be safe if it contains only images of ver-

33

tices in S. The vertices in a safe partition are also said to be

safe. Additionally, the vertices in S whose images in ~ are safe

are also safe. We assume that there exists a ~’ in ~ isomorphic

to S; therefore, when the sizes of two similarly labeled partitions

in G and S are equal, we may also assume that the partition in

~ contains only those vertices that are in ~’. Consequently, we

may mark all partitions in ~ that have equal-sized partitions with

the same label in S as safe. On the other hand, a partition in L7

that is larger than its corresponding partition in S is necessarily

suspect, because it must contain at least one vertex which is not

an image of a vertex in S, and we cannot yet determine which

one that is.

The relabeling function then uses only safe labels when rela-

beling vertices. This guarantees that the following invariant holds

after each relabeling iteration:

(2) Label Invariant (Phase II): If g in G is the image

ofs in S, then g has the same label as s. Additionally,

g and s are either both safe or both suspect.

If there exists a safe partition in both ~ and S with the same

label, each containing only a single vertex, then these vertices are

isomorphic to one another, by the definition of safe partitions.

SubGemini marks these two vertices as matched, and assigns both

the same random, fixed label that will be used to help further par-

tition neighboring vertices in subsequent relabelings. SubGemini

does not relabel matched vertices, but continues to relabel other

vertices until all vertices in S are matched, or until no progress

can be made.

Algorithm VerifyImage(K, CV):

For each vertex c in CV do:

● Match K and c together. Mark them as “safe”. Assign them

both the same unique, label.

● While there is progress, do the following:

—Using Phase II relabeling function, relabel neighbors of

safe vertices in both S and G.

– Check for consistency.

—Mark equal-sized, similarly labeled partitions in S and

~ as “safe”.

– Match singleton partitions.

– Check for progress.

● If all vertices have been matched, verify the isomorphism

mapping, record the subgraph instance, and return SUCCESS.

● If no progress has been made after some iteration, choose an

unmatched vertex s from S and the partition P in G with the

same label as s, and call VerifyImage(s ,P) recursively. If the

recursive call succeeds, return S u CCESS. If the recursive call

fails, go back to beginning of the For loop, to the next vertex

c in CV.

An example of the Phase II relabeling algorithm is shown for

the circuit in Fig. 6, the same circuit example from section III.

Table 1 shows the steps SubGemini takes to find an instance of the

sub circuit in the main circuit. At the end of Phase 1, Sub Gemini

chose the vertices N 13 and N 14 as the candidate vector, and vertex

N4 as the key vertex. The columns in these tables show how the

vertices are relabeled on each pass.

In this example, the key vertex and the candidate vertex are

both assigned a random label, shown here as KV. In pass 1, only

the neighbors of N4 and N14 take on new labels. In subsequent

34

~

A A? KeyNode A7?

Figure 5. This is a simple case in which ambiguity will arise. Be-
cause the circuit is symmetric, the Phase H algorithm must at some point
“guess” whether transistor A is the left or the right device vertex in the
corresponding circuit graph when attempting to find a match in 6. Ei-
ther choice is correct, and will lead to a match if there is one. Thus, no
backtracking is required for this example.

passes, labels in effect spread out from the initially labeled ver-

tices. Safely labeled vertices are shown in boldface and vertices

are shown boxed as they become matched. By Pass 4, the parti-

tions have been refined to the point where N1, N2 and N6 can be

matched with N7, N1O and N15. Subsequent passes match more

vertices and by Pass 7, all vertices in the subgraph have been

matched, validating this instance of the subgraph.

Relabeling usually results in a complete matching of vertices,

but ambiguity sometimes arises. When no progress is detected

aft er relabeling and mat thing vertices, Sub Gemini chooses a par-

tition from the subgraph and guesses a match between a vertex

in this partition and a vertex from the corresponding partition in

the main graph. It then continues with the relabeling procedure.

If this produces a failure, then SubGemini must backtrack and

try another guess (see Fig. 5). Upon completion, the Phase II

relabeling algorithm either confirms the presence of a matching

subgraph in ~ in which c matches K, or shows that there really

was no match to be found.

The algorithm above performs consistency checks similar to

those of the Phase I algorithm. Furthermore, upon each recur-

sive call to the algorithm, the current state, including the current

labels and the list of currently matched vertices, is saved. If the

call to the algorithm fails, it restores this state before returning

to the caller. Additionally, “progress” is defined to occur either

when at least one additional vertex is labeled and marked safe, or

when two singleton partitions are matched during an iteration.

A. Special Signals

Usually there are special signals such as Vdd and GND which

have the same meaning in the main circuit and the subcircuit.

By using these special ~gnals when specifying the sub circuit, the

user may place further constraints on the sub circuit. Without this

ability to treat Vdd and GND as special, SubGemini will find the

CMOS inverter subcircuit shown in Fig. 7 in every NAND and

NOR gate. An alternate solution to this problem is to extract

gates in order using the partial order induced by the subcircuit

relation on the gates. That is, one would first extract the largest

gates which are not subcircuits of any other gates and then pro-

ceed to smaller and smaller gates.

Performance is also affected by the ability to refer to special

signals like Vdd and GND. If these signals are treated specially,

then SubGemini can avoid labeling them, a process which requires

I GND

Figure 7. The inverter circuit on the left will be found as a subcircuit
in the NAND circuit, ss shown in bold, at the right unless Vdd and GND
are recognized as special nets.

T
Vertex Init
DI
D2
D3
D4

N1
N2

D5
D6
D7
D8
D9
D1O
Dll

N7

N8

N9

N 10

N14

N15

Vertex

D1

D2

D3

D4

N1

N2

N3

N4

N5

N6

D5

D6

D?

D8

D9

D1O

Dll

N?

N8

N9

N1O

N 14

N15

Iks 1

A=n+-sIW

A=n+sI<V

El

El

A=n+sI(V

A=n+sI<V

H

<
Pass 2

A

A

B=sA

C=gA

B
C=gA

13=sA

n

A

A

C=gA
C=gA

B=sA

H
B=sA

%.% 5

P= H+sK+s L+g Ivf

b Graph: .S

Pass 3 lPaxs4

D=p+-gC+sB lH=D+sEl+gC7

D=p+gC+sB H= D+sB+gC

E= A+sB+gC+diT J= E+sA’V+sB+gC
E= A+sB+gC+sIiT J= E+sKV+sB+gC

B

M= C+gD+gE

@

B —,—

in Graph: ~

F= P+sC
D=p-+gC+sB

D=p+gC+sB

F2=n+sC
E= A+sB+gC+sKV
G=n+sB

E= A+sB+gC+sKV

c
c

p

~c+gD+gE

lRl=B+sE

—
H. D+sB+gC

H= D+sB+gC
—

J= E+sItT+sB+gC

J= E+sIiT+sB+gC

lKJ=sD+sD

M= C+gD+gE
M. C+gD+gE

c

Sub Graph: S

Pass 6

W= P+sI<+sL+gS

P= H+sIi”+sL+oM

F
S= M+gH+gJ

E2!J
S= M+gH+gJ

—
P= H+sk+sL-+gM

P= H+sk+sL+gM

~= J+sIiT+sL+gM

-
S= M+gH+gJ

S= M+gH+gJ

L

W= P+sI<”+sL +@’

b

Q

R

K

L

X =S+gP+gQ

%V=P+sI{+sLi-gS

W= P+sK+sL+gS

El

rRKX =S+gP+gQ

Y =S+gP+gR

L

KV

N

Pass 7

E

CC =W+sK+sL+gY

DD =W+sK+sL+gX

Q

R

K

L

x

KV

Y

N

ElCC =W+sK+sL+gY

DD =W+sI<+sL+gX

E
R

K

x
Y

L

KV

N

Example Phase 11 relabeling algorithm: n and p represent device types, g and s represent terminal types,

boldfaced letters represent safe vertices and boxed letters indicate vertices that have been matched

N11, N 12 and N13 are never labeled in G, and are therefore not represented in the above table.

Figure 6. Circuit to be labeled by Phase II algorithm.

35

TABLE 2

EXPERIMENTAL RESULTS

Name

G

256 bit

Adder

Barrel

Shifter

(64 64:1

Muxes)

RAM Array

RAM Array

RAM Array

Cross Bar

OutFrame

Router

Name

s
2 Input NAND

2 Inut NOR

OAI gate
4:1 Mux
4:1 Mux

(no inverts)
16:1 MUX

64:1 MUX

EChain
RAM Cell

Deviant RAM Cell

Inverter

BitCell
FIFO Buffer
BitCell
FIFO Buffer

BitCell

FIFO Buffer

Size

G

8672

16128

6000
24000
96000
6000
24000
96000
6000
24000
96000
12183

19976

55089

Size
s
4
4
6
12
8

60
252
2
6
6
6
6
6
6
2
2
2
8
3089
8
3089
8
3089

Size
Cv
1016
768
764
2688
5376

1280
256
5376
2000
8000
32000
1
1
1
2000
8000
32000
420
2
1050
5
2100
10

Num

Found

1016

0
764

1344

1344

256

64

5376

1000
4000
16000
1
1
1
2000
8000
32000
420
2
1050
5
2100
10

Recurs.

Calls

o
0
0
0
2679

0
0
10752
0
0
0
0
0
0
0
0
0
0
18
0
45

0
90

setup
Time
3.2
3.1
3.3
10.5
10.7

10.0
11.0
9.7
1.9
9.5
36.4
2.2
8.9
37.7
2.1
8.6
37.0
8.7
11.1
18.6
19.3
56.6
56.5

Phase I
Time
1.0
0.9
1.1
2.6
3.4

2.1
2.3
3.4
1.1
5.1
20.4
0.5
1.9
9.5
1.0
4.6
16.6
1.2
1.7
2.4
2.6
7.2
7.9

Phase H

Time
5.8
3.3
6.0
46.0
66.6

47.3
35.9
29.4
5.3
29.1
176.5
0.0
0.0
0.0
4.2
14.6
62.4
1.8
85.0
5.2
256.4
9.7
820.0

Total

Time

10.0
7.3
10.4
59.2
80.7

59.4
49.2
42.5
8.3
43.7
233.3
2.7
10.8
47.2
7.3
28.8
116.0
11.7
97.8
26.2
278.3
73.5
884.4

examining a very large number of unrelated devices in the entire represents the common task of gate extraction for a medium sized

circuit. For example, when relabeling Vdd in Phase II of one

of the RAM experiments, SubGemini needs to check all 48,000

neighbors of Vdd to see if any are marked safe. The algorithm

must perform this check twice for each of the 16,000 RAM cells

in the array, thus making 768 million checks overall.

Therefore, SubGemini allows the user to indicate that signals

such as Vdd and GND are to be treated as special. The relabel-

ing algorithm then assigns Vdd and GND unique labels that are

not changed by the Phase I and Phase II relabeling algorithms.

These special labels allow SubGemini to quickly identify Vdd and

GND; moreover, by marking Vdd and GND as special, SubGemini

avoids extensive rechecking of their neighbors.

V. EXPERIMENTS

In this section we present a set of experiments that shows

the operation and performance of SubGemini over a variety of

examples, In all these examples both the circuit and the sub-

circuit are transistor netlists in SIM “format. The circuits listed

in Table 2 were chosen to illustrate several aspects of the Sub-

Gemini algorithm. In the first example, SubGemini is used to

find several different gates in a large standard cell implementa-

tion. The second example shows how SubGemini performs on a

large, symmetric circuit where it is very difficult to distinguish

the boundaries of the individual subcircuits. The third example

features a large RAM array which contains many copies of the

same subcircuit. In the final example, SubGemini is used to find

both a small circuit and a very large subcircuit in an actual chip

design.

Table 2 gives the sizes of the circuits and subcircuits in terms

of the number of transistors. Also given are the size of the can-

didate vector, the number of instances found, and the number of

recursive calls to Verify Image. Except where indicated, all exper-

iments were done with Vdd and GND treated as special signals.

The performance shown is the CPU time on a Sun 4/490 with 32

Mbytes of memory.

In the first experiment, Sub Gemini finds three different gates

in a standard cell implementation of a 256-bit ripple carry adder

generated using MIS, a multi-level logic optimization tool. This

circuit and the results show that the algorithm works very well

for this case.

The second experiment uses a 64-bit barrel shifter composed

of 64 64:1 multiplexors, each composed of a tree of the 4:1 mul-

tiplexors implemented using pass-gate logic. Note that because

of the pass gate logic, standard techniques that use signal direc-

tion or channel graphs do not work. For the experiment in the

second line of this example, we remove the inverters from the

4:1 multiplexer subcircuit. The remaining structure is now sym-

metric, which is reflected by the increased size of the candidate

vector and the number of recursive calls to Verify Image that are

required. Even so, the running time does not increase substan-

tially. In the next two experiments, SubGemini looks for a 16:1

multiplexer made from five 4:1 multiplexors and for a complete

64:1 multiplexer. Finally, in the E-chain experiment, SubGemini

finds all isolated chains of two n-type transistors.

The next set of three experiments use a static RAM array

made from the 6 transistor RAM cell in Fig. 8. In all three

experiments the size of the array ranges in size from 1K to 16K

cells. In the second experiment, the type of one transistor in one

RAM cell of the array is changed, and SubGemini is used to find

that one “deviant” cell. This experiment shows the power of the

Phase I algorithm to filter out subcircuits that do not match. In

the third experiment, we find all the inverters in the array.

The last experiment features the implementation of the Chaos

router chip currently being designed at the University of Wash-

ington[2] and SubGemini is used to find all instances of a small

and a large subcircuit. The FIFO subcircuit is a fifo comprising

21 10-bit entries implemented as a circular buffer with head and

tail pointers. The BitCell subcircuit is a single memory cell used

Figure 8. The 6-transistor static RAM circuit.

36

in the FIFO. The long time taken to find the FIFO subcircuit is

caused by the large amount of symmetry in the memory array

in the FIFO which slows down the labelling algorithm. Each

instance of the FIFO causes 9 recursive calls on VerifyJrnage, one

for each column in the memory array that must be disambiguated.

However, no backtracking is required.

The running time of the algorithm depends largely on the

running time of Phase II. The setup time measures how long it

takes to read the input file and create the internal data structures

and is linear in the size of the input files. Phase I time is actu-

ally less than the setup time and thus is not a factor. Phase II

time depends on the structure of the graph and the subcircuits.

SubGemini can find subcircuits like standard cell gates and RAM

cells that have sufficient structure to allow the labelling algorithm

to work efficiently. In these cases, the running time of the algo-

rithm is approximately linear in the size of the candidate vector

times the size of the subcircuit being sought, which is bounded

by the size of the graph. For subcircuits with substantial internal

symmetry or which have poorly defined boundaries, vertices must

be relabeled many times and SubGemini is somewhat slower, as

shown in the multiplexer and FIFO examples. In spite of this,

the running time remains reasonable, largely because Phase I is

usually able to find the right circuits for the candidate vector.

VI. DISCUSSION AND FUTURE WORK

Formulating the problem of finding subcircuits in a graph as

an abstract graph isomorphism problem allows a general, tech-

nology and domain independent solution. Using a pure subgraph

isomorphism algorithm does have some side effects however. In

particular, the Phase II relabeling algorithm relies on the assump-

tion that external nets are not shorted to other external nets of

the same subgraph within the larger circuit. An example of a

shorted circuit is shown in Fig. 9, While shorting inputs in this

fashion does not change the subcircuit instance in the view of the

user, in our representation of the circuit it does create a subgraph

which is not isomorphic to the subgraph representing the original

sub circuit, and thus our subgraph isomorphism algorithm does

not find it.

This restriction, however, may be relaxed to apply only to

external nets connected to more than one device in S. Purely ex-

S:

(b
x

s
P P

s

x

N x

G:

T
s s

P P

s s

N

s

N

Figure 9. The instance of the NAND gate on the right haa its two inputs

shorted within ~. Thus it no longer matches the NAND suhcircuit, S, at

the left since it has one input vertex while S has two.

ternal nets (external nets connected to only one device in ~) can

be recognized and handled separately. Because each purely exter-

nal net of ~ is connected to only one device in S, it can always be

matched as long as the device to which it is connected is matched

to a corresponding device in (j. Therefore, Sub Gemini optionally

pre-matches all purely external nets which are not marked special

in S.

It is possible to solve the more general shorted inputs problem

using a brute-force method that looks for all possible instances

of legally shorted inputs, but this increases the running time by

a factor approximately equal to the number of such inst antes.

A more clever algorithm should be possible that uses the prop-

erties of the labels in Phase II, and this is a topic of ongoing

research. Additionally, the task that Phase II performs is made

up of many identical, independent tasks, one for each vertex in

the candidate vector. We believe that there is potential for nearly

linear speedup in Phase II using a simple parallel version of our

relabeling algorithm.

We have presented a general algorithm for recognizing subcir-

cuits in a large circuit graph using a fast subgraph isomorphism

algorithm. This algorithm has no knowledge about the underly-

ing circuit except for its structure, and thus it can be used for any

circuit technology, This algorithm is fast enough to be applica-

ble to the many CAD problems where a solution to the subgraph

isomorphism problem is needed.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Michael Boehner. LOGEX - An Automatic Logic Extrac-

tor from Transistor to Gate Level for CMOS Technology. In

Proceedings of the 25th Design Automation Conference, pages

517-522, June 1988.

Kevin Bolding and Lawrence Snyder. Mesh and Torus Chaotic

Routing. In Proceedings of the Brown/MIT Conference on Ad-

vanced Research in VLSI and Parallel Systems, March 1992.

C. Ebeling and O. Zajicek. Validating VLSI Circuit Layout

by Wirelist Comparison. In Proceedings of the Conference on

Computer Aided Design (ICCAD), pages 172-173, 1983.

Carl Ebeling. GeminiII: A Second Generation Layout Vali-

dation Tool. In Proceedings of the Conference on Computer

Aided Design (ICCAD), pages 322-325, November 1988.

F. Luellau, T. Hoepken, and E. Barke. A Technology Inde-

pendent Block Extraction Algorithm. In Proceedings of the

21st Design Automation conference, pages 610-615, 1984.

Georg Pelz and Uli Roettcher. Circuit Comparison by Hier-

archical Pattern Matching. In Proceedings of the Conference

on Computer Aided Design (ICCAD), pages 290–293, 1991.

T. Watanabe, M. Endo, and N. Miyahara. A New Automatic

Logic Interconnection Verification System for VLSI Design.

IEEE Transactions on Computer Aided Design, CAD-2:70-

82, April 1983.

37

