Symmetry Detection for Automatic Analog-Layout Recycling’

Youcef Bourai and C.-J. Richard Shi
Department of Electrical Engineering, Box 352500
University of Washington
Seattle, WA 98195-2500, USA

Abstract: Layout symmetry is used to minimize the impact of
mismatch on the performance of analog circuits. In this paper,
an efficient algorithm is presented to detect automatically the
mask layout symmetry. It consists of identifying signal nets,
isolating circuit devices and detecting their symmetry, and finally
synthesizing the layout symmetry. Combined with layout
compaction with symmetry constraints, this technique provides a
methodology for automatic analog-layout recycling.

1. INTRODUCTION

Analog and mixed analog/digital (mixed-signal) circuits
represent a significant portion of today’s application specific
integrated circuits (ASIC) industry. Tight performance needs, fast
technology innovations and strict time-to-market requirements
lead to a constant evolution of the ASIC market. To be
successfully in the market place, multiple-source “foundries”
have become essential for many companies. This requires that a
layout design be retargetable for different fabrication processes.
The same issue arises in the emerging Intellectual Properties (IP)-
based design as how to reuse physical layouts for digital cell
libraries and analog building blocks.

Recycling layout resources accumulated for old fabrication-
processes is important in cutting the design cycle time. It is
generally very time-consuming to modify a mask layout even for
minor changes in the design rules. Several automatic techniques
have been proposed to recycle the digital portion of a mixed-
signal-circuit layout. They are either based on explicit symbolic-
layout extraction followed by compaction [4,8], or by
transforming a given layout into a layout description format
expressed in parameters associated with shapes, sizes, and
locations, and then to re-synthesize an optimal layout based on
the new set of design rules [10].

Unfortunately, these techniques are not directly applicable to
recycle the analog portion of a mixed-signal-circuit layout.
Different from digital layouts, to achieve high performance
requirements, analog layouts are designed to satisfy certain
symmetry and matching constraints.

The methodology we propose to automatic analog-layout
recycling consists of layout symmetry extraction and layout
compaction with symmetry constraints. The latter problem has
been resolved in [2,6]. In this paper, we address how to extract
the circuit symmetry from a mask layout.

*. This work was sponsored by Rockwell Semiconductor Systems,
NSF/industry Center for Digital-Analog Integrated Circuits (CDADIC),
and by US Defense Advanced Research Projects (DARPA) under grant
number F33615-96-1-5601 from the United States Air Force. Wright
Laboratory, Manufacturing Technology Directorate.

0-7803-5012-X /99/$10.00 ©1999 IEEE.

2. OVERVIEW OF THE PROPOSED METHOD

To minimize electrical offsets and noise, certain devices of an
analog circuit are placed symmetrically with respect.to an axis.
Skiliful analog designers may insert several symmetry axes. This
is illustrated in Figure 1.

T

(b)

M4 M3

(a)

Figure I: Symmetrical pairs are: (a). (M1,M2), (M3,M4)
(b) (M5.M8), (M6,M7).

To guarantee the proper analog circuit performance, those
signal nets that connect the symmetric devices are usually
symmetric with respect to the symmetry axis. Therefore our
method can be introduced as follows:

e Isolate the devices of a circuit by identifying signal nets or
net factorization.

e Compare the isolated devices to tind which of them are
symmetric.

e Detect net symmetries and synthesize the layout symmetry.

The rest of this paper is organized as follows. Sections 3 and
4 describe, respectively, signal net identification and device
isolation. Section 5 presents an algorithm to detect symmetric
devices. Section 6 addresses the layout symmetry synthesis.
Section 7 analyzes the complexity of the proposed method.
Section 8 concludes the paper.

3. NET FACTORIZATION

In our method the layout mask is internally represented by the
Corner Stitching (CS) data structure [7]. Consequently, the
factorization procedure is similar to that of Magic’s net extractor
[9], which is based on the flooding approach. The fundamental
operation is to mark all the tiles that belong to a single electrical
node (net). Starting at a given tile 7, for example the lower left
tile of the connecting layer, mark recursively all its neighbors.
Once the marking procedure is finished all the tiles in the node
are marked with the same node number n. By repeating the

procedure for each unmarked tile all the nets are marked (and
factorized out). The marking procedure can be sketched as
follows:

1. See if T has been marked. If so return.
2. Mark the tile T as belonging to the node n.

3. Visit all the neighbors of the tile that connect to T.
Recursively process each of the neighbors that are
electrically connected to 7.

4. Contact tiles are duplicated on all planes they connect. If T
is a contact, the corresponding contact tiles on other layers
are found using the point search algorithm. Each such tile is
then processed recursively.

The explicit representation of connectivity by comner-stitches,
coupled with the simplicity of the flooding approach, makes net
factorization extremely fast. Figure 2 shows an example of net
factorization.

k l

Figure 2: Net factorization, where five nets are marked by k, I, m,
n, and p.

4. DEVICE LAYOUT ISOLATION

At the end of net factorization, we can differentiate between
the tiles that form the nets from those that form the devices. Thus
by scanning the layout, the tiles that form the net are ignored. By
doing so, the layout becomes a set of isolated entities.

Each entity is formed by a set of intersected rectangles. We
define an intersecting graph of rectangles G = (V,E), where each
veVis a rectangle, and there is an edge ecE between v,eV and
v,€V if the two corresponding rectangles intersect. To find
these entities, we use the algorithm in [3], which finds the
Connected Components (CC) of an intersecting graph of
rectangles in the plane, as illustrated by Figure 3. Thus, each
connected component represents a device in the layout. The
intersected rectangles are found by the algorithm described in [1],
which is based on the Priority Search Tree (PST) technique [5].
We have chosen the PST technique to report the intersected
rectangles because of its powerfulness and because it is easy to
implement. At the end of the scanning process, we obtain a set of
connected components each being a device placed in a plane.

(b)

Figure 3: (a) Isolated devices.(b) Connected Components of
the intersecting graph of rectangles.

5. SYMMETRIC DEVICE DETECTION

Consider those devices that are horizontally aligned. We first
sort them according to their lowest bottom edge and stored them
in a “device” queue to be swept.

We sweep the device queue. The devices that share the
present scan-line are pair-wise compared. If two devices are
identical and connected by a net, they are detected to be
symmetric. Therefore, we pop them up and generate a temporary
symmetry axis.

The detection algorithm is described as follows. The first
device is collected in a heap H,, where the rectangles are sorted in
increasing manner according to their left edge. The second one is
then mirrored i.e. it is collected in another heap H, where its
rectangles are sorted in a decreasing manner according to the
right edge as depicted by Figure 4. By scanning the two heaps,
the rectangles that share the present vertical scan-line are
gathered in two different lists. Each list is sorted three times:
according to the bottom edge of the rectangles, according to their
height, and finally according to their width.

3 1 8 9]
N N 5[:1 l:]lO

12 3]

H = {7,1,2,3,4,5,6} H,= {14,8,12,9,13,10,11}

Figure 4: Devices and their heaps.

The triple sorting is necessary to avoid the conflict depicted
by Figure 6. Thus the two devices are symmetric if at each
vertical scan- line, the compared two lists are exactly identical as
shown by the algorithm in Figure S. Once the scanning is over,
and using the net information obtained from the net factorization
phase, we eliminate the redundant axes.

6. LAYOUT SYMMETRY SYNTHESIS

Once the symmetric devices are detected, all the nets that
have the same node as the terminal of these symmetric devices
are also symmetric. Thus, since the tiles of each net have been
already marked with the node number of the net, these tiles can
be gathered in the same set. For example in Figure 2, the tiles of
the net m and net p are symmetric with respect to the symmetry
axis generated by the devices to which net m and net p are
connected. By visiting the nets, a symmetric set § of tiles can be
constructed for each symmetric axis. With this, the symmetry
constrains for compaction can be generated in a straightforward
manner. '

7. COMPLEXITY ANALYSIS

Our algorithm uses the corner-stitching data structure.
Because this data structure induces a plethora of small tiles that
are rectangles, each procedure of the algorithm must be fast
enough to yield a good performance.

During the net extraction phase, two major procedures are
used: the enumeration procedure to find the starting tile, and the
neighboring search procedure. It has been proved in [7] that the
expected running time of the directed enumeration algorithm is
linear in the number of tiles intersecting the search area. The
expected running time of neighboring search is linear in the
number of neighbors.

In the device extraction phase, using the balanced Priority
Search Tree to find the intersecting rectangles has the expected
running-time complexity of O(nlogn+k) and the space complexity
O(n+k), where n is the number of rectangles, k is the number of
pair-wise intersections, and k£ is much smaller than » as shown in
[1]. The UNION FIND algorithm [11] is used to cluster the
intersecting rectangles in connected components, which has the
expected running-time complexity O(nlogn+k). Thus the overall
running-time of our algorithm is O(nlogn+k), where k is smaller
than n.

The algorithm is coded in the C++ programming language. A
test example is illustrated in Figure 7. By scanning the layout and
applying the algorithm of Figure 5, three local symmetry axes
have been initially found (see Figure 7 (a)). After eliminating the
redundant ones we have kept a unique axis which is common to
all the symmetric objects as shown by Figure 7 (b).

8. CONCLUSIONS

A fast yet simple algorithm to detect analog-circuit symmetry
at the mask layout level has been presented. By combined with
layout compaction with symmetry constraints, automatic analog-
layout recycling can be achieved.

REFERENCES

[1] T. Asano, M. Sato and T. Ohtsuki, ** Computational geometry
algorithms”, in Layout Design and Verification (T. Ohtsuki
ed.), Elsvier Science Pub., pp. 295-347, 1986.

[2] E. Felt, E. Malavasi, E. Charbon, R. Totaro and A.
Sangiovanni-Vincentelli, “‘Performance-driven compaction
problem with symmetry constraints,” Proceedings of IEEE
Custom Integrated Circuits Conference, pp. 1731-1735, May
1992.

[3] H. Imai and T. Asano, “Finding the connected components
and a maximum clique of an intersecting graph of rectangles
in the plane,” Journal of Algorithms, vol. 4, pp. 310-323,
1983.

[4] B. Liu and A. R. Newton, “Kahlua: A hierarchical circuit
disassembler,” Proceedings of IEEE/ACM Design
Automation Conference, pp. 311-316, 1987.

[5]1 M. Mc Creight, “Priority search trees,” SIAM Journal on
Computing, vol. 14, no.2, pp. 257-276, May 1985.

(6] R. Okuda, T. Sato, H. Onedera and K. Tamaru, “An efficient
algorithm for layout compaction problem with symmetry
constraints,” Proc. IEEE/ACM International Conference on
Computer Aided Design, pp. 148-151, Nov. 1989.

[7} J. K. Ousterhout, “Corner stitching: A data-structuring
technique for VLSI layout tools,” IEEE Transactions on
Computer Aided-Design of integrated Circuits and Systems,
vol. CAD-3, no.1, pp. 87-100, January 1984.

[8] T. Sato, N. Ohba, H. Watanabe and S. Saito, “Stick diagram
extraction program: SKELETON,” Proceedings of
IEEE/ACM International Conference on Computer Aided
Design, pp. 318-321,1988.

[9] W. S. Scott and J. K. Ousterhout, “MAGIC’s circuit
extractor,” Proceedings of IEEE/ACM Design Automation
Conference, pp. 286-292, 1985.

[10] Y. Shigshiro, T. Nagata, I. Shirakawa, I. Arungsrisangohai
and H. Takahashi, “Automatic layout recycling based on
layout description and linear programming,” [EEE
Transactions on Computer Aided-Design of Integrated
Circuits and Systems, vol. 15, no. 8, pp. 959-967, August
1996.

[11] R. E. Tarjan “Efficient of a good but not linear set union
algorithm,” Journal of ACM, 22, pp. 215-225, 1975.

Input: Two CCs (Connected Components) of intersecting graph
of rectangles CC,;and CC, with the same number of rectangles;
Output: is true if the two CCs are symmetrical;
{
/* Rectangle is defined as a structure R(1.b,r,t) where Lb,r,t are
the left, bottom right and top edges respectively */
Rectangle R;, R, R, R',;
Boolean result;
}{672[7 f{l. fiz[
List L"), L', L2, LY, L%, LS, L2, L'y /% list of rectangles */
/*H, sorts increasingly the rectangles of CC, according to their
left edge™*/
For each R, € CC,
insert(H,, R{(l));

/*H, sorts decreasingly the rectangles of CC, according to their
right edge*/
Foreach R; € CC,

insert(H», R r));

/* get the left most element of each heap */
R, = left_most_ofiH,);
R’,= leftt_most_oftH,);

While (R, = nil)

initialize(L",); initialize(L’,);
foreach R, e Hyand R(l) = R(l)
inserI(L”,, Ri);
for each Ric H,and R{(r) =R’ (r)
insert(L"z, R;)
/* sort L and L’; according 10 the bottom of the rectangles*/
L' y=sort_b(L’));L' y=sort_b(L");
/*sort L' and L'y according to the height of the rectangles*/
L2 =sort_h(L',):L*»= sort_h(L',); /
/ *sort L*,and L?, according to the width of the rectangles*/
L j=sort_w(L?));L" ;= sort_w(L?,);
result = is_same(L’,.L";).‘
if (result = false)
return false;
R, = get_next_element(H,, R.);
R’ = get_next_element(H,. R’,);
} /* end of while */
return true;

Figure 5: The device-symmetry detection algorithm.

<— Scan line —>
R4 R4
R3
R3
R1 R2
R2
R1

Figure 6: Differentiating between rectangles by triple sorting.

vececer

W

3=

ﬁ

(a) Three local symmetry axes

!

=6

(b) The three local axes are merged into one axis

Figure 7: A layout example.

