Solving Device PDE's with the PROPHET Simulator

http://www-tcad.stanford.edu/~prophet/

Dan Yergeau Stanford University

With contributions from Zhiping Yu and Gaofeng Wang (Stanford) Paco Leon (Mixed Technology Associates) Conor Rafferty (Agere Systems)

NACDM 2002

Solving Device PDE's with the PROPHET Simulator

.....

Outline

What is PROPHET?
Specifying PDE's for PROPHET to solve
Discretization on a mesh
Applications
Summary

NACDM 2002

Solving Device PDE's with the PROPHET Simulator

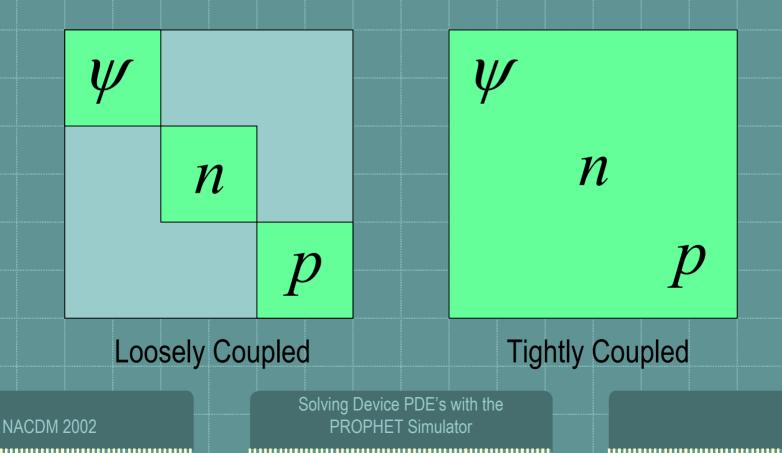
What is **PROPHET**?

 Developed at Bell Labs as a process simulator
 Released externally as a TCAD simulation *platform* (Stanford, UT Austin, and Conor Rafferty added device simulation capabilities)
 Permits user-level specification of PDE's created from reusable operators

NACDM 2002

PROPHET Overview

1111111111 ······


₽n.

User interface:		Input parse		er	Graphics/postprocessi				g
Modules:	Solve		Grid		Field		Bias		
Libraries:	Database			Structure			Linear solver		
PDE Engine:	Asser	nbly	Ç	Solver	S		retizatio	า	Models
							ometric)		(physical)
NACDM 2002				Device PE OPHET Si	DE's with th imulator	1e			4

Representing Physical Systems in PROPHET

0 0 0 VO //////

Global system is composed of blocks of PDE's

Representing PDE's in PROPHET

PDE is a sum of terms (well, almost) Terms are a combination of geometric and physical operators: $PDE = G_1P_1 + G_2P_2 + G_3P_3$ • Geometric operator: $\nabla \times$, $\nabla \cdot$, $\partial / \partial t$ • Physical operator: $flux = f(A, \nabla A, X, \nabla X, ...)$ Functions permit evaluation of intermediate values with chaining back to solution variables

NACDM 2002

Geometric Operators

Spatial operators: divergence, nodal
Differentiation wrt time
Interface flux
Dirichlet
Constraint
Interface algebraic

NACDM 2002

Solving Device PDE's with the PROPHET Simulator

.

Physical Operators

Algebraic building blocks: +, -, *, /, sqrt, exp, etc.
Fluxes: -ε∇ψ, nµ∇ψ - D∇n

- Many domain-specific expressions:
 - space charge density
 - mobility
 - device contact boundary conditions
 - Shockley-Reed-Hall and Auger recombination

NACDM 2002

Specifying Terms

<geo_op>.<phy_op>(<inputs>|<outputs>)@{<where>}

 $\nabla \cdot (\varepsilon \psi)$

 $q\left(p-n+N_{D}^{+}-N_{A}^{-}\right)$

box_div.lapflux(psi|psi)@{silicon,poly,oxide}

nodal.nscd(electrons,holes,netdope|psi)@{silicon,poly}

constraint.continuity(0|psi)@{silicon/oxide,poly/oxide}

dirichlet.device_dirichlet(netdope|psi)@{CONTACTS}

NACDM 2002

Specifying Systems (PDE block)

system name=silicon poisson

+ sysvars=psi

- + term0=ndiv fbm.lapflux(psi|psi)@{SEMICONDUCTORS, INSULATORS}
- + term1=nodal.nscd(electrons,holes,netdope|psi)@{SEMICONDUCTORS}
- + term2=dirichlet.device_dirichlet(netdope|psi)@{CONTACTS}
- + term3=constraint.continuity(psi|psi)@{ALL INTERFACES}
- + tmpvars=electrons, holes
- + func0=quasiFermi(psi|electrons, holes)@{SEMICONDUCTORS}

NACDM 2002

Solution Methods

 Timestepping typically TR/BDF2 with LTE-based timestep control PDE block staggering Newton nonlinear algorithm on a single block convergence detection in residual and/or update norm range clamping damping Small signal AC, preliminary harmonic balance

NACDM 2002

Discretization

Apply Gauss' Theorem

$$\nabla \cdot \mathbf{F} = U = \frac{\partial u}{\partial t} + G - F$$
$$\oint_{\Omega_{CV}} \nabla \cdot \mathbf{F} d\Omega - \oint_{\Omega_{CV}} U d\Omega = 0$$
$$\oint_{S_{CV}} \mathbf{F} \cdot \hat{n} dS - \oint_{\Omega_{CV}} U d\Omega = 0$$

Approximate on a mesh

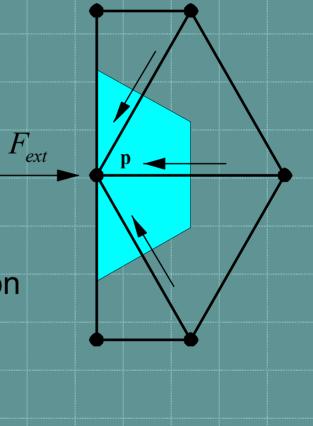
$$\oint_{S_p} \mathbf{F} \cdot \hat{n} dS = \sum_i F_{i,p} l_i$$
$$\oint_{\Omega_p} U d\Omega = U_p V_p$$

NACDM 2002

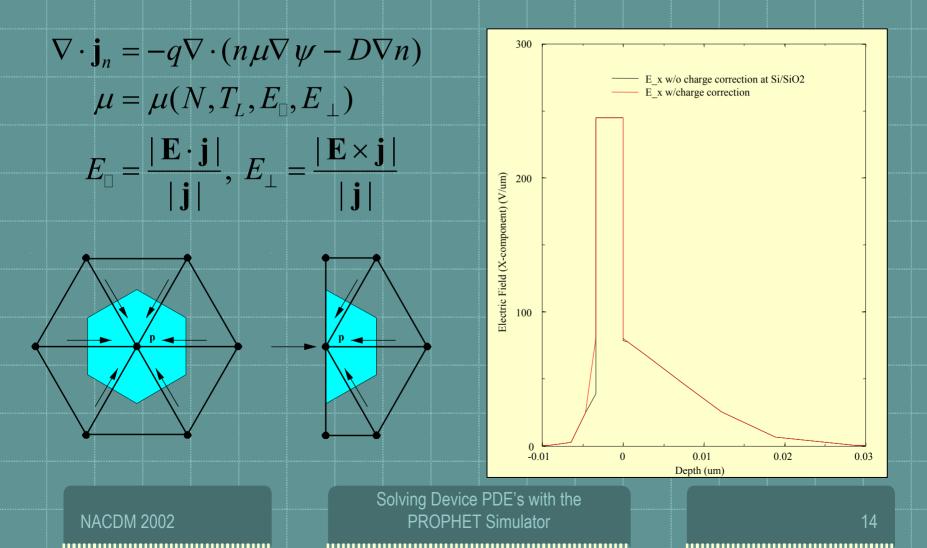
Solving Device PDE's with the PROPHET Simulator

12

Г÷ а Пал & Пас....


Interfaces

Control volume integration is "closed" by including external flux


$$\oint_{S_p} \mathbf{F} \cdot \hat{n} dS = F_{ext} l_p + \sum_i F_{i,p} l_i$$

Thus, the natural boundary condition is zero-flux if equation has no interface flux terms

NACDM 2002

Evaluating the "Real" Flux

Applications

Modeling quantum effects via Density Gradient
 Laser simulation

 Interconnect interactions with substrate (device level frequency domain)

NACDM 2002

Density Gradient

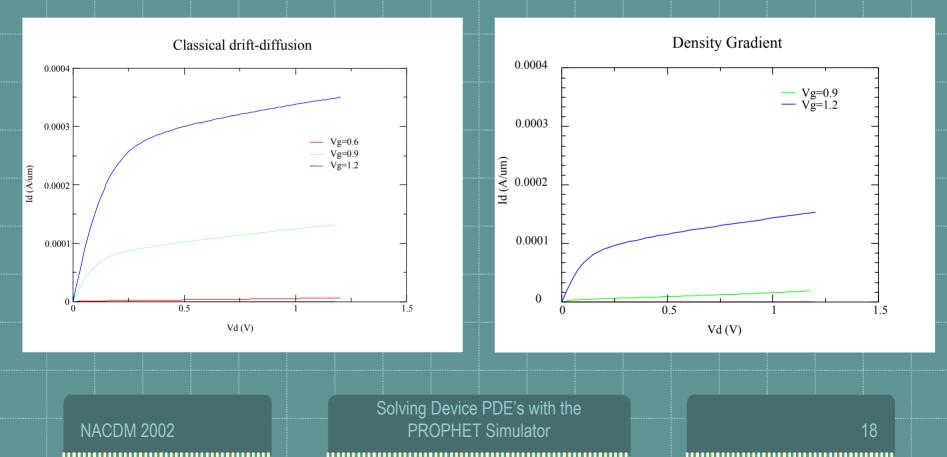
Models quantum confinement of particles adjacent to silicon/oxide interface. The large chemical potential barrier of the insulator requires the wave function to vanish at the interface. Continuity of this wave function pushes carriers away from the barrier.

$$\mathbf{F}_{n} = -D_{n}\nabla n + \mu_{n}n\nabla\psi + 2\mu_{n}n\frac{\hbar^{2}}{4lqm_{n}^{*}}\nabla\left(\frac{\nabla^{2}\sqrt{n}}{\sqrt{n}}\right)$$

NACDM 2002

Density Gradient System $\nabla \cdot (\varepsilon \psi) + q (p - n + N_D^+ - N_A^-) = 0$ $\nabla \cdot \left(b_n \nabla \sqrt{n} \right) + \frac{\sqrt{n}}{2} \left(\psi - \frac{kT}{q} \ln \frac{n}{n_i} - \phi_n \right) = 0$ $\nabla \cdot \left(b_p \nabla \sqrt{p} \right) + \frac{\sqrt{p}}{2} \left(\psi + \frac{kT}{q} \ln \frac{p}{p_i} - \phi_p \right) = 0$ $\frac{\partial n}{\partial t} + \nabla \cdot \left(\mu_n n \nabla \phi_n\right) + r = 0$ $\frac{\partial p}{\partial t} - \nabla \cdot \left(\mu_p p \nabla \phi_p \right) + r = 0$

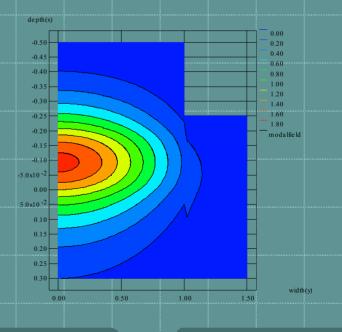
NACDM 2002


Solving Device PDE's with the PROPHET Simulator

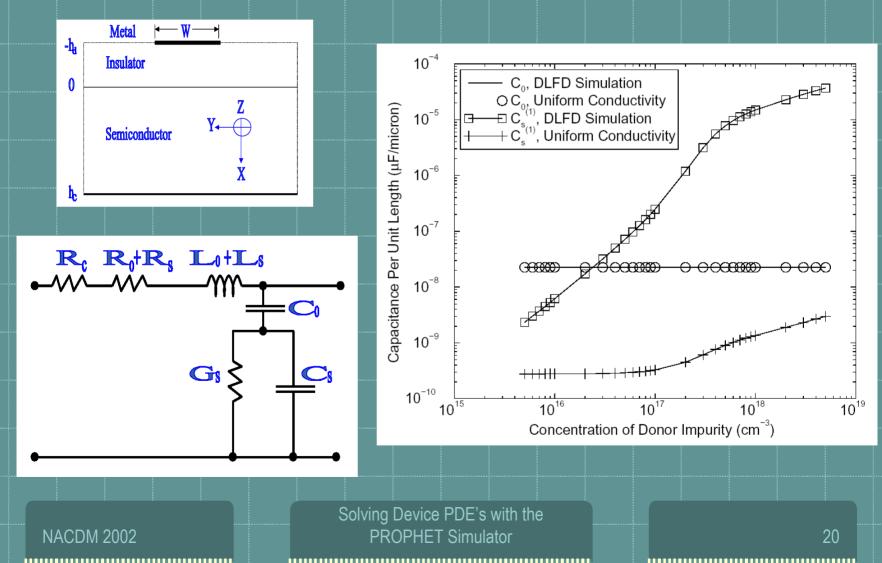
.....

Classical DD vs. Density Gradient

e7010 ______ e40 ____ e40 ____


MIT 50nm well-tempered MOSFET

Photon Generation in a Laser


$$\nabla \cdot (\varepsilon \nabla \psi) + q \left(p - n + N_D^+ - N_A^- \right) = 0$$

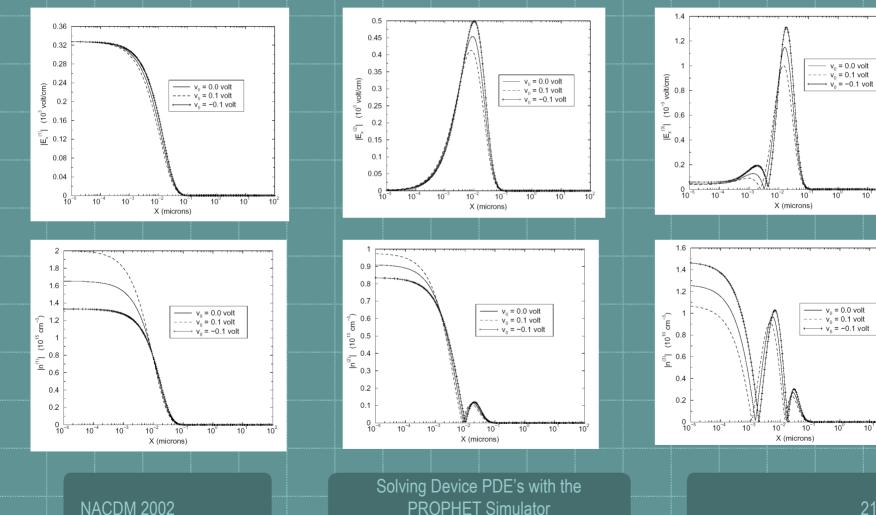
$$-\nabla \cdot (-\mathbf{F}_n) + r_{SRH} + r_{Auger} + B_{\text{field}} np + r_{st} = 0$$

$$-\nabla \cdot (-\mathbf{F}_p) + r_{SRH} + r_{Auger} + B_{\text{field}} np + r_{st} = 0$$

$$-\nabla \cdot (\kappa \nabla T_L) - \nabla \cdot (-\psi \mathbf{j}) = 0$$

$$\left(v_g G - 1/\tau \right) N_p + \beta_{sp} R_{sp} = 0$$

Last equation is lumped (scalar), but dependent on distributed spontaneous emission rate 1.55 micron InGaAs/InP Edge Emitting Laser Intensity of dominant mode



NACDM 2002

Interconnect/substrate

Bias Effects on the Substrate

.

10

10

10

Summary -- Advantages

Rapid prototyping Simulation on real structures Reasonable efficiency (extra assembly overhead is fairly minimal) Partial box method Code reuse means fewer errors Model debugging aids

NACDM 2002

Drawbacks and Needs

Diagnostics

Still looking for faster and more robust linear solvers. We use Berkeley Sparse and PETSc (sparse direct, ILU+GMRES, ILU+BiCGstab)

Recovery from failed Newton is through load control (reduce time step or bias change). What alternatives have been tried and how well do they work?

NACDM 2002