

High Performance Electrical Modeling & Simulation at Sandia National Laboratories

http://csmr.ca.sandia.gov/workshops/nacdm2002/

3 April 2002

Scott Hutchinson Computational Sciences Department Sandia National Laboratories Albuquerque, NM, USA

Talk Outline

- Workshop
 - Welcome
 - Goals
 - Background
- Sandia's HPEMS Program
 - High Performance Computing at Sandia
 - Design Process
 - HPEMS Integrated Road Map
 - Xyce Parallel Electronic Simulator
 - Preliminary Solver Results
 - Status
 - Challenges / Future Work
- Summary

Welcome to New Mexico -<u>Hundreds of Years of Tradition</u>

Initially, just beautiful landscapes.

Then the Anasazi nearly 1000 years ago...

In 1598, first New Mexico colonial capital established by Don Juan de Onate...

Late in 19th century, the railroad and Anglos arrive...

Later, Other Art and Life Forms Arrived...

e a benine

Photograph courtesy Philip Greenspun, http://photo.net/philg/

Collaborations...

Foster and strengthen collaborations between Sandia and leaders in circuit and device modeling and numerical analysis

Information...

Exchange information on the state-of-the-art methods for linear systems, nonlinear equations, ODE/DAEs and PDEs as applied to circuit and device simulation

Challenges...

Assess barriers and challenges to creating a scalable parallel circuit simulator and identify promising algorithmic and software approaches for overcoming these barriers

Background - Why a Workshop?

- Sandia has little or no history of developing circuit and device simulation codes
 - Few connections with academia or industry
- Sandia does have a long history of developing high-performance continuum mechanics codes
 - Leaders in large-scale parallel computing (algorithms, application codes, OS)
- Algorithms research, as applied to circuit simulation, doesn't appear very active, at least in academic circles
 - Is this an issue?

How To Make Numerical Codes More Robust and Easier to Use

Wednesday - 12:30 PM

The Utility of Iterative Linear Solvers and Other Numerical Methods for Circuit and Device Modeling

Thursday - 4:00 PM

The Next Generation of Transistor-Level Circuit Simulation

Friday - 11:30 AM

High Performance Computing at Sandia

- Full System
- Subassembly
- Components
- Continuum
- Sub-grid
- Separable effects

- Structural dynamics
- Thermal
- Solid mechanics
- Computational fluid dynamics
- Electrical
- Shock Physics
- Fire
- Geophysics

High Performance Algorithms at Sandia (Partial List)

- Solvers and Numerical Algorithms
 - Trilinos (Epetra, AztecOO, TSF, NOX)
 - ML Multi-level preconditioning
 - LOCA Library of Continuation Algorithms
- DAKOTA Large-scale Engineering Optimization and Uncertainty Analysis
- Zoltan & Chaco Partitioning and load-balancing toolkit
- CUBIT Mesh Generation Tool Suite
 - Unstructured Hex, Tet, Quad, and Tri Meshing
 - Solid model geometry preparation

Sandia's High Performance Electrical Modeling and Simulation (HPEMS) Program

- Begun in 1996 under DOE ASCI program
- Focused initially on high-performance transient analog simulation
 - Parallel computing support
 - Radiation and age-aware device models
 - Two parallel codes:
 - Initial, short-term solution, shared-memory Berkeley SPICE-based ChileSPICE
 - Long-term solution distributed-memory, object-oriented Xyce
- Enhanced Avant! DaVinci (dynamic memory support)
- Charon distributed-memory Device Modeling Code under development
- Device/analog modeling, Mixed-signal Modeling
- Design optimization and sensitivity analysis (DAKOTA)

Sandia Electrical Circuit Design Process

HPEMS Integrated Roadmap

Xyce[®] Kernel & Libraries

Xyce[™] Novel Approaches (We think...)

- Object-oriented software design
- Distributed-memory parallel
 - Dynamic parallel partitioning and load balance of heterogeneous problems
 - Distributed sources
- "Standard" Newton solve i.e., solve for update
 - More appropriate scaling for iterative solvers
- Experimented with a variety of nonlinear strategies:
 - Inexact-Newton methods, line-searches, modified Newton, gradient searches, etc.
- Focus on preconditioned Krylov iterative linear solvers
 - Primarily non-restarted GMRES
 - ILUT (dual threshold) preconditioners with overlapping
 - Diagonal shifting, adaptive strategies (Mike Heroux)
 - Reordering methods (RCM, Duff-Koster)

Serial Example - Best case comparisons - Sparse direct vs. Krylov iterative:

		Newton + SuperLU		Inexact-Newton + GMRES + ILUT				
	# Newton Steps	Linear Solver Time (s)	Total Time (s)	# Newton Steps	Linear Solver Time (s)	Total Time (s)		
RHP Adder	61	3.00543	28.3939	55	0.510286	22.4649		
CASC	58	0.023597	0.042887	22	0.016613	0.025845		

- > Relatively small problems (RHP is ~1800 unknowns)
- Line searches don't appear to help
- Behavior isn't consistent as problem grows (e.g., Inexact-Newton method doesn't appear to work well on large problems)
- > Further studies underway...

Sandia National

aboratories.

Xyce Performance

NACDM 2002, April 3-5, 2002, Santa Fe, NM

RHP Adder Subcircuit on sgi Origin 3800, MIPS 400 MHz R12k Processors, 8 Mbyte cache
NOTE: Code in early development state; minimal optimization performed

Program Phase	MFlops	Efficiency (800 MFlops max.)
Loads (Residual + Jacobian)	11.3	1.4 %
Linear Solve (Trilinos/Aztec)	96.6	12.1 %
Total Solution	32.9	4.1 %

Xyce Fixed Problem-Size Parallel Scaling

aboratories

Xyce/DAKOTA: Overview

(work with Bart van Bloemen Waanders)

DAKOTA is a framework of tools for optimization, uncertainty estimation, and sensitivity analysis, for use with massively parallel computers.
Design Goal:

Kyce/Dakota Minimize Delay Results Comparator Circuit

Nominal Design **Final Design** input Output delay 6 n 2 3 5 6 × 10 length = 2E-6, width = 2E-6length = 1E-6, width = 5E-6

* Found solution in 6 fcn evaluations using gradient based method vs 50 fcn evaluations using coordinate pattern search

NACDM 2002, April 3-5, 2002, Santa Fe, NM

Xyce/DAKOTA FPGA Circuit Flipflop Device Optimization

- FPGA consists of XOR, AND, flipflop circuits
- flipflop circuit 34 devices divided into 12 design variables -(6 x widths/lengths) chosen based on nominal width and length specifications
- Minimize delay between input and output signal
- Centered parameter study results:
 - random lower values
 - Xyce terminated in certain design space
- Gradient based method (npsol-sqp) failed,
- Vector parameter study from initial point to bounds (40 steps):
 - identified non-smooth behavior
 - multi-modal
- Genetic Algorithm study identified best design
 - 1000 function evaluations using population size of 160 (7 cycles)
 - SGOPT pga_real (W.Hart) / ran overnight on 8 proc linux cluster

Vector Parameter Study - non-smooth behavior

Xyce/Dakota FPGA Circuit flipflop Device Optimization Results

	L1	W1	L2	W2	L3	W3	L4	W4	L5	W5	L6	W6	Objective Fn
Nominal	0.6	2	0.6	4.8	0.6	5.1	0.36	3.8	0.6	2.8	0.6	6.6	112.1
Optimal	0.55	2.1	0.66	4	0.54	5.1	0.28	4.9	0.51	2.4	0.52	6	29.1

FPGA Transistor Groups Channel Length & Width Values [um]

- Shared-memory ChileSPICE production computing:
 - Several performance enhancements
 - Radiation models
- Distributed-memory Xyce analog simulator in beta release:
 - Large-scale transient analog simulation
 - Design optimization demonstrated with DAKOTA
 - Initial analog/device-scale coupling demonstrated
 - Radiation models implemented by end of FY
 - Mixed-signal simulation capability work underway

Outstanding Challenges (from our perspective) / Future Work

- Parallel preconditioned Newton-Krylov methods
 - Faster performance, Improved robustness
- Parallel sparse-direct solver library
- Stiff DAE integration
 - What's the status on waveform relaxation?
 - Fast Solvers?
- Homotopy methods for circuit simulation
- Constrained Newton methods "continuous" voltage limiting
- Parallel partitioning / Ordering methods
- Robustness Too many solution parameters!
- Adjoint sensitivities/optimization
- Schematic capture GUI for large problems (> 10⁶ devices)
- Large-scale parasitic extraction

Thanks!

- Sandia Computer Science Research Institute (CSRI):
 - David Womble, Deanna Ceballos, Barbara Delap
 - CSRI Executive Board (David Womble, Bill Camp, Paul Yarrington, Neil Pundit, Juan Meza, Danny Sorenson, Deepak Kapur)
- Workshop Colleagues:
 - Tammy Kolda (Sandia), Bob Melville (Agere)

