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Abstract

This paper introduces SyMPVL, an algorithm for

the approximation of the symmetric multi-port trans-

fer function of an RLC circuit. The algorithm em-

ploys a symmetric block-Lanczos algorithm to reduce

the original circuit matrices to a pair of typically

much smaller, banded, symmetric matrices. These

matrices determine a matrix-Pad�e approximation of

the multi-port transfer function, and can serve as a

reduced-order model of the original circuit. They can

be \stamped" directly into the Jacobian matrix of a

SPICE-type circuit simulator, or can be used to syn-

thesize an equivalent smaller circuit. We also prove

stability and passivity of the reduced-order models in

the RL, RC, and LC special cases, and report numer-

ical results for SyMPVL applied to example circuits.

1 Introduction
Electronic circuits often contain large linear subnet-

works of passive components. Such subnetworks may
represent interconnect automatically extracted from
layout as large RLC networks, models of IC packages,
models of wireless propagation channels, etc.

In general, we are interested only in the behavior of
the linear subnetworks at their terminals. This behav-
ior can be fully characterized by a matrix-valued trans-
fer function. In most practical cases, a very closely
approximating matrix-valued transfer function can be
obtained from a reduced-order model that is several
orders of magnitude \smaller" than the original cir-
cuit. In [6], we introduced MPVL (Matrix Pad�e Via
a Lanczos-type process), an algorithm for the accurate
and e�cient computation of reduced-order models of
large linear circuits. MPVL computes a matrix-Pad�e
approximation of the original circuit's matrix transfer
function. MPVL is a general algorithm, applicable to
any linear system, and for di�erent number of inputs
and outputs.

RLC circuits are described by symmetric matri-
ces and can be characterized in terms of square and

symmetric matrix transfer functions. Moreover, being
composed entirely of passive components, RLC cir-
cuits are always stable and passive. In this paper we
introduce SyMPVL, a variant of MPVL, which takes
advantage of these special structures of RLC circuits.
SyMPVL computes symmetric matrix-Pad�e approxi-
mations of the circuit matrix transfer function, using
a symmetric block-Lanczos algorithm. SyMPVL pro-
duces increasingly more accurate reduced-order mod-
els and, in the important special cases of RL, RC, and
LC circuits, guarantees stability and passivity at any
order of approximation. The results of the algorithm
can be used to synthesize a reduced, equivalent circuit.
The work described in this present paper generalizes
SyPVL [8], which is an algorithm for computing single-
input single-output transfer functions and models.

Alternative approaches, not based on Pad�e approx-
imation, for generating reduced-order models for RLC
circuits also exist. In [16], a block-Arnoldi algorithm
is employed. Another approach is PACT, which relies
on pole matching and is described in [11].

2 Symmetric Circuit Equations
In this section, we �rst formulate the equations that

describe general RLC circuits, and then we discuss the
special cases of RC, RL, and LC circuits. We show
that the matrices associated with the circuit equations
are always symmetric and, in the special cases, they
are also positive semi-de�nite. These properties are
important for the SyMPVL algorithm and for stability
and passivity proofs.

2.1 General RLC Circuits

The connectivity of a circuit can be captured by the
adjacency matrix,A. Each row of A corresponds to a
circuit element and each column to a circuit node. The
column corresponding to the datum (ground) node of
the circuit is omitted in order to remove redundancy.
By convention, we attach an arbitrary direction to
each circuit element, and the corresponding row of A
will contain +1 in the column corresponding to the



source node, �1 in the column corresponding to the
destination node, and 0 everywhere else. Kirchho�'s
laws, which depend only on connectivity, can be ex-
pressed as follows:

KCL: ATib = 0;

KVL: Avn = vb:
(1)

Here ib and vb are the vectors of branch currents and
voltages, respectively, and vn is the vector of the non-
datum node voltages.

We are interested in analyzing RLC circuits and
for simplicity, we assume that the circuit is excited
only by current sources. The adjacency matrix and
the branch current and voltage vectors can then be
partitioned according to circuit-element types:

A =

2
664
Ai

Ag

Ac

Al

3
775 ; vb =

2
664
vi
vg
vc
vl

3
775 ; ib =

2
664
ii
ig
ic
il

3
775 :

Here the subscripts i, g, c, and l stand for branches
containing current sources, resistors, capacitors, and
inductors, respectively.

The set of circuit equations is completed by adding
the branch constitutive relationships (BCR's), which
describe the physical behavior of the circuit elements.
For RLC circuits, the BCR's are:

ii = �It(t); ig = Gvg; ic = C
d

dt
vc; vl = L

d

dt
il: (2)

Here It(t) is the vector of current-source values, G and
C are appropriately-sized diagonal matrices whose di-
agonal entries are the conductance and capacitance
values of each element. Clearly, these values are pos-
itive for any physical circuit. The matrix L has the
inductance values on the diagonal and may contain
o�-diagonal elements that model inductive coupling.
Nevertheless, it remains symmetric positive de�nite.

The modi�ed nodal formulation (MNA) of the cir-
cuit equations is obtained by combining the Kirchho�
equations (1) with the BCRs (2), and eliminating as
many current unknowns as possible. For the case of
RLC circuits only inductor currents need to be left as
unknowns. Setting

G =

�
AT

g GAg AT
l

Al 0

�
; C =

�
AT

c CAc 0

0 �L

�
;

x =

�
vn
il

�
; B =

�
AT

i

0

�
;

(3)

the resulting MNA equations can be summarized com-
pactly in matrix form:

Gx+C
d

dt
x = BIt(t): (4)

Note that the matricesG and C in (3) are symmetric,
and, in general, inde�nite. However, in Section 2.2
below, we will discuss some important special cases
for which the matrices become positive semi-de�nite.

We are interested in determining the network func-
tions of the RLC block viewed as a p-terminal compo-
nent. Since we allowed only current sources in our for-
mulation, it is natural to determine the Z-parameters.
By applying the Laplace transform to (4) and assum-
ing zero initial conditions, we obtain

(G+ sC)X = BIs(s);

Vi = BTX:
(5)

Here X, Is(s), and Vi represent the Laplace trans-
forms of the unknown vector x, the excitation current
It(t), and the vector of voltages across the excitation
sources, respectively. Eliminating X in (5) gives

Vi =
�
Ai 0

�
X = Z(s)Is(s);

where Z(s) = BT (G+ sC)
�1
B:

(6)

2.2 Special Cases: RC, RL, LC Circuits

In the case of RC circuits, the matrices L, Al, and
the vector il are empty. The matrices C and G in (3)
then reduce to

G = AT
g GAg and C = AT

c CAc;

and thus C and G are positive semi-de�nite.
In the case of RL circuits, the matrices C and Ac

are empty. The Laplace transform of (4) now becomes

AT
g GAgVn +AT

l Il = AT
i Is(s);

AlVn �LsIl = 0:
(7)

By multiplying the �rst equation in (7) by s and sub-

stituting sIl from the second, we obtain

AT
g GAg| {z }
C

Vns +AT
l L

�1Al| {z }
G

Vn = sAT
i Is(s);

where the matricesC andG are again symmetric pos-
itive semi-de�nite.

In the case of LC circuits, the matrices G and Ag

are empty. The Laplace transform of (4) is reduced to

AT
c CAcsVn +AT

l Il = AT
i Is(s);

AlVn � LsIl = 0:
(8)

By multiplying the �rst equation in (8) by s and sub-
stituting sIL from the second, we obtain

AT
c CAc| {z }
C

Vns
2 +AT

l L
�1Al| {z }
G

= sAT
i Is(s): (9)



Again, the matrices C and G are symmetric posi-
tive semi-de�nite and a change of variables � = s

2

brings (9) to the usual form.

3 Matrix-Pad�e Approximation

Recall that the transfer function Z(s) of an p-port
is de�ned in (6) where G and C are real symmetric
N � N matrices, and B is a real N � p matrix. We
remark that Z : C 7�! (C [ f1g)

p�p
is a matrix-

valued rational function. Each pole s of Z is also an
eigenvalue of the matrix pencil G+�C, i.e., each pole
s of Z satis�es the equation det (G+ sC) = 0.

3.1 Review of the Case p = 1

For the moment, assume that p = 1. In this case,
Z is a scalar-valued rational function, and for each n,
we can de�ne a scalar-valued Pad�e approximant Zn to
Z as follows. A function of the form

Zn(s) =
�n�1(s)

 n(s)
; (10)

where �n�1 and  n are polynomials of degree at most
n � 1 and n, respectively, is called an nth Pad�e ap-

proximant to Z if

Z(s) = Zn(s) + O(sq(n)); (11)

where q(n) is as large as possible; see, e.g., [3]. The
condition (11) means that the Taylor expansions of Z
and Zn about s = 0 agree in as many leading Taylor
coe�cients (the so-called moments) as possible. In
general, q(n) = 2n.

The standard approach to computing Zn is based
on explicit moment generation. First, one computes
the leading q(n) Taylor coe�cients of Z, and from
these, one then generates the coe�cients of the poly-
nomials �n�1 and  n in (10). This standard approach
to computing Zn is employed in the asymptotic wave-
form evaluation (AWE) technique [13, 14]. However,
computing Pad�e approximants using explicit moment
computations is inherently numerically unstable, and
indeed, in practice, this approach can be used only for
very moderate values of n, such as n � 10; see [5].
These numerical instabilities can be avoided by ex-
ploiting the Lanczos-Pad�e connection [10] and gener-
ating the Pad�e approximant Zn via the Lanczos pro-
cess [12]. The resulting algorithms for stably com-
puting Pad�e approximants of transfer function are
PVL [4, 5] for general circuits and its special vari-
ant SyPVL [8] for RLC circuits. In SyPVL, the Pad�e
approximant Zn is computed using the formula

Zn(s) = �
T
n (An + sBn)

�1
�n; (12)

where the n � n matrices An; Bn and the vector �n
are generated from a symmetric version of the Lanczos
process.

3.2 The General Case p � 1

Now we return to the general case of p-ports with
p � 1. One approach to obtaining approximations of
Z is to compute scalar Pad�e approximants for each
of the p2 entries of Z by means of p2 runs of PVL.
However, a much more e�cient approach is to use the
concept of matrix-Pad�e approximation [3] that gener-
ates a matrix-valued approximation Zn for all entries
of Z in one run. Moreover, the reduced-order model
generated by Zn is much smaller than the reduced-
order model obtained from p

2 individual PVL runs.
Matrix-Pad�e approximants can be represented by

means of a pair of numerator and denominator matrix
polynomials. However, this approach su�ers from the
same instability mentioned above for the case p = 1.
Instead, we use an appropriate extension of the for-
mula (12) to the case p � 1. We say that a matrix-
valued function Zn : C 7�! (C [ f1g)

p�p
is an nth

matrix-Pad�e approximant to Z if Zn is of the form

Zn(s) = �
T
n (An + sBn)

�1
�n; (13)

where �n 2 C
n�p An; Bn 2 C

n�n , and if

Z(s) = Zn(s) + O(sq(n)) with maximal q(n): (14)

In general, we have q(n) � 2bn=pc, with q(n) >

2bn=pc if, and only if, so-called de
ation occurs due
to certain linear dependencies.

In the next section, we formulate a Lanczos-type
algorithm that generates matrices An, Bn, and �n

such that the function Zn de�ned in (13) is indeed an
nth matrix-Pad�e approximant to Z.

4 A Symmetric Lanczos-Type Process
In order to compute matrix-Pad�e approximants to

matrix-valued functions Z, we need a Lanczos-type
algorithm that can handle multiple starting vectors,
namely the p columns of the matrix B in (6). Such a
procedure was recently developed in [1] and further re-
�ned in [7]. We use a special symmetric variant of the
algorithm described in [7] that exploits the symmetry
of the matrices G and C in (6). Lanczos-type proce-
dures for multiple starting vectors are necessarily quite
involved for two reasons. First, in the course of any
such algorithm, linearly dependent vectors may occur
that need to be de
ated. Second, so-called look-ahead

techniques are required to avoid potential breakdowns
due to division by quantities that cannot be excluded
to be zero. The algorithm used here is the only exist-
ing Lanczos-type process that has both de
ation and
look-ahead built in.



We now describe the symmetric Lanczos-type pro-
cedure. This algorithm could be stated directly in
terms of G, C, and B. However, we opted for a for-
mulation that starts from a factorization of G of the
form

G =MJ�1MT
; where M; J 2 RN�N

: (15)

Here J is assumed to be a \simple" matrix, such as a
diagonal matrix. For example, if M is real symmet-
ric positive de�nite, then we can choose J = I (the
N � N identity matrix). A factorization (15) can be
computed via a suitable version of the Bunch-Parlett-
Kaufman algorithm if G is inde�nite, or a version of
the Cholesky algorithm ifG is symmetric positive def-
inite; see, e.g., [9]. The algorithm is then formulated
in terms of M, MT, J, C, and B. This corresponds
to rewriting the transfer function (6) as

Z(s) =
�
M�1B

�T �
J+ sM�1CM�T

��1 �
M�1B

�
:

The algorithm generates a sequence of vectors,
v1;v2; : : : ;vn; : : : ; which are called the Lanczos vec-

tors. In the absence of look-ahead steps, the Lanczos
vectors are constructed to be J-orthogonal:

vTi Jvn =

(
�n if i = n;

0 if i 6= n;

for all i; n � 1: (16)

If look-ahead steps do occur, then the Lanczos vec-
tors are only cluster-wise J-orthogonal, instead of the
vector-wise J-orthogonality (16). The Lanczos algo-
rithm is an iterative procedure, with n denoting the
iteration counter. At the nth step, the algorithm gen-
erates the nth Lanczos vector vn. For n � p, the vec-
tor vn is obtained by J-orthogonalization of the nth
column of the starting block M�1B. For n > p, the
vector vn is obtained by �rst multiplying a suitable
previous vector, vn�pc , with

A =M�1CM�T (17)

and then J-orthogonalizing the resulting vector
against a suitable subset of the previous Lanczos vec-
tors. Here pc = pc(n) denotes the current block
size. Initially, pc = p, and then within the algorithm
pc is reduced by one every time a de
ation occurs.
Thus, after n steps of the algorithm, the Lanczos vec-
tors v1;v2; : : : ;vn have been constructed; in addition,
there are pc \auxiliary" vectors, v̂n+1; v̂n+2; : : : ; v̂pc ,
that will be turned into Lanczos vectors or de
ated in
successive iterations.

Next, we present a precise statement of the sym-
metric Lanczos-type algorithm.

Algorithm 1 (Symmetric Lanczos-type method.)
INPUT:

Matrices G =GT =MJM
T; C = CT 2RN�N;

A block B =
�
b1 b2 � � � bp

�
2 RN�p.

OUTPUT:
The p1 � p matrix � where

p1 = p�(# of de
ations during the �rst p steps);

The nonzero entries of the n� n matrices Tn and

�n where n is the value of the iteration counter at
termination.

0) For i = 1; 2; : : : ; p, set v̂i = J
�1
M
�1
bi.

Set pc = p. (pc is the current block size.)

Set Iv = ;. (Iv records de
ation.)

Set 
 = 1, C
 = ;, V(
) = ;. (Records clusters.)

For n = 1; 2; : : : , do (Build nth Lanczos vector vn.) :

1) (De
ate v̂n (if necessary) and obtain vn.)

1a) Set � = n� pc.

1b) For all i 2 C
 (in ascending order), set

�i;� =
v
H
i v̂n

kvik2
; v̂n = v̂n � vi�i;�; ti;� = ti;� + �i;�:

1c) If kv̂nk > dtol, then continue with step 1h).

Otherwise, de
ate v̂n by doing the following :

1d) If pc = 1, then stop. (In this case, Zn = Z.)

1e) If � > 0 and the de
ated vector v̂n is nonzero, then

set Iv = Iv [ f
(�) g.

1f) For i = n; : : : ; n+ pc � 2, set v̂i = v̂i+1. (The auxil-

iary vector v̂n is de
ated. The indices of the remain-

ing auxiliary vectors are reduced by one.)
Set pc = pc � 1. (The current block size is reduced.)

1g) Go back to step 1a).

1h) (Normalize v̂n to obtain vn.) Set

tn;n�pc = kv̂nk2 and vn =
v̂n

tn;n�pc
:

1i) (Update cluster information.)

Set 
(n) = 
, V(
) =
�
V

(
)
vn

�
, C
 = C
 [ fng.

If C
 = fng, set 
v = 
 (maxf1; n� pcg).

2) (Compute �(
) and check for end of cluster.)

2a) Form �
(
) =

�
V

(
)
�T
JV

(
).

2b) (Decide if the current cluster is complete.)

If the matrix �
(
) is singular (or in some sense

\close" to singular), then continue with step 3).
Otherwise, perform the following updates :

2c) (J-orthogonalize the vectors v̂i, n+1 � i � n+pc�1,

against the vectors in the current cluster.)
For i = n+ 1; n + 2; : : : ; n+ pc � 1, set

�
tj;i�pc

�
j2C


=
�
�

(
)
��1 �

V
(
)

�T
J v̂i;

v̂i = v̂i �V
(
)

�
tj;i�pc

�
j2C


:



2d) Set 
 = 
 + 1, 
(n+ 1) = 
, C
 = ;, V(
) = ;.

3) (Obtain new vector v̂n+pc .)

3a) Compute v = J�1M�1
CM

�T
vn.

3b) (J-orthogonalize v against previous vectors.)
Set � to the last column of the matrix �(
�1).

For all k = 
v; 
v + 1; : : : ; 
 � 2, set

�
tj;n

�
j2Ck

=
�
�

(k)
��1 ��

ti;j
�
i2C
�1;j2Ck

�T
�;

v = v�V(k)
�
tj;n

�
j2Ck

:

3c) (J-orthogonalization of v due to inexact de
ation.)

For all k 2 Iv with k < 
v (in ascending order), set

�
tj;n

�
j2Ck

=
�
�

(k)
��1 �

V
(k)

�T
Jv;

v = v�V(k)
�
tj;n

�
j2Ck

:

3d) (J-orthogonalize v against cluster V(
�1).) Set

�
tj;n

�
j2C
�1

=
�
�

(
�1)
��1 �

V
(
�1)

�T
J v;

v̂n+pc = v�V(
�1)
�
tj;n

�
j2C
�1

:

4) (In the initial iterations, set up �.) If n � pc, set

�n;i = tn;i�p for all n� pc + p � i � p:

To get the nth matrix-Pad�e approximant Zn of Z,
we need the matrices �, �n, and Tn, that are pro-
duced by n (� p) steps of the Lanczos-type algorithm.
These quantities are de�ned as follows:

M�1B = Vp1 �; � =
�
�i;j

�
1�i�p1;1�j�p

;

�n = VT
nJVn = diag

�
�(1)

; : : : ;�(
)
�
;

Tn = (�n)
�1

VT
nJAVn =

�
ti;j

�
1�i;j�n

:

(18)

Here Vn =
�
v1 � � � vn

�
denotes the matrix that

contains the �rst n Lanczos vectors as columns, and p1
is de�ned to be the value of pc at iteration step n = p.
In general, p1 � p, and p1 = p if none of the vectors
in the initial block M�1B has been de
ated. In term
of �, �n, and Tn, the nth matrix-Pad�e approximant
to Z is now given as follows:

Zn(s) = �
T
n

�
��1n + sTn�

�1
n

��1
�n; �n =

�
�

0

�
: (19)

A rigorous proof of (19) can be found in [7].

5 Stability and Passivity
For RLC circuits, Pad�e-based reduced-order mod-

els are in general not stable and not passive. However,
if the order n is large enough so that the reduced-order
models are su�ciently accurate, then the reduced-
order models de�ned by Zn are almost stable and

passive, and can in fact be made stable and passive
by a suitable \post-processing" of Zn. Such post-
processing techniques will be described elsewhere.

In this section, we show that the reduced-order
models de�ned by Zn are guaranteed to be stable and
passive for RC, RL, and LC circuits.

5.1 Stability

Recall from the discussion in Section 2.2 that the
symmetric matrices G and C in the formula (6) of
Z are positive semi-de�nite for RC and RL circuits.
Furthermore, for LC circuits, Z is given by (6) with
s replaced by s2, where G and C are again positive
semi-de�nite.

SinceG is positive semi-de�nite, it follows that J =
I in (15). As a result, the Lanczos vectors generated by
Algorithm 1 are actually orthogonal, and thus �n =
In (the n � n identity matrix) for all n. Therefore,
equation (19) reduces to

Zn(s) = �
T
n (In + sTn)

�1
�n: (20)

Furthermore, the third relation in (18) now becomes

Tn = VT
nAVn: (21)

By (17), the matrixA is similar to the symmetric pos-
itive semi-de�nite matrix C, and thus all eigenvalues
of A are non-negative. Together with (21), it follows
that Tn is symmetric positive semi-de�nite.

By (20), all poles of Zn are of the form

s = �
1

�
; where � is an eigenvalue of Tn:

Since Tn is symmetric positive semi-de�nite, � � 0,
and thus all poles of Zn are non-positive. Moreover,
it can be shown that a possible pole s = 0 is simple.
Altogether, this proves that the reduced-order models
de�ned by Zn are stable for RC and RL circuits. The
case of LC circuits can be handled similarly, using the
formula (9) and the fact that the transformation s 7!
s
2 maps the purely imaginary poles of an LC circuit
into points on the negative real axis.

5.2 Passivity

We now show that the reduced-order models de-
�ned by Zn are passive. Again, we only treat the RC
and RL cases; LC circuits can be handled similarly
after the transformation s 7! s

2 has been employed.
It is well known (see, e.g., [17, 2]) that the reduced-

order model de�ned by Zn is passive if, and only if,
the following three conditions are satis�ed:

(i) Zn(s) has no poles in C+ = f s 2 C j Re s > 0 g
(the right half of the complex plane);



(ii) Zn(�s) = Zn(s) for all s 2 C ;

(iii) Re
�
xHZn(s)x

�
� 0 for all s 2 C+ and x 2 C p .

It thus remains to verify that the function Zn de-
�ned in (20) satis�es (i){(iii). Condition (i) is satis�ed
in view of the stability of Zn. Condition (ii) follows
trivially since Tn and �n are are real matrices. Fi-
nally, we verify condition (iii). Let s 2 C+ . Since Tn

is symmetric positive semi-de�nite, we have

Re
�
yH (I + �sTn) y

�
= kyk22 + (Re s)yHTny � 0 (22)

for all y 2 Cn . For any given x 2 C p , we insert
y = (I + sTn)�nx into (22). This gives

0 � Re(yH(I+ �sTn)y) = Re(xH�n(I+ sTn)
�1
�nx)

= Re(xHZn(s)x):

Hence the reduced-order model given by Zn is passive.

6 Reduced-Circuit Synthesis
The reduced-order transfer function Zn given

by (19) can also be interpreted as a time-domain
reduced-order model. By introducing a state vector
X(s), equation (19) becomes�
��1

n + sTn�
�1
n

�
X(s) = �nI(s); Vn(s) = �

T
nX(s);

and transformed back to time domain yields the sys-
tem of �rst-order di�erential algebraic equations

��1
n x(t) + Tn�

�1
n

d

dt
x(t) = �ni(t); vn(t) = �

T
nx(t):

(23)

This system of only n equations can be used to replace
the original, much larger, system (4), which describes
the linear circuit. When the linear circuit represents a
sub-block of a larger, nonlinear circuit, and the vari-
ables v(t) and i(t) represent the sub-block's interface
currents and voltages, equations (23) together with
the equations describing the rest of the nonlinear cir-
cuit form a smaller and easier to solve system of non-
linear di�erential algebraic equations.

In order to use existing circuit simulation tools, it is
often useful to synthesize a reduced circuit, which im-
plements exactly the reduced system (23). By means
of algebraic manipulations, the equations (23) can be
brought to a form that corresponds to an RLC topol-
ogy, which generalizes either the �rst or the second
Cauer forms. In general, there is no guarantee that
the value of the elements will be positive. Neverthe-
less, when the reduced linear sub-circuit is stable and
passive, negative-valued circuit elements will not af-
fect the stability or the accuracy of the simulation.
For the case p = 1 and for RC circuits, such a synthe-
sis procedure is described in detail in [8].

+

−
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LC circuit

Re Ix

E xV
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Figure 1: The PEEC circuit

7 Examples
In this section, we report numerical results for SyM-

PVL applied to three example circuits.

7.1 The PEEC Circuit

Our �rst example is the circuit resulting from the
PEEC modeling of an electromagnetic problem de-
scribed in [15]. The circuit consists of only inductors,
capacitors, and inductive couplings and it is driven by
a �nite impedance source. We are interested in com-
puting the response of this circuit, in this case the
current 
owing through one of the inductors.

Writing the KCL equations of the LC two-port and
di�erentiating them with respect to time gives

sAT
l Il + sAT

c Ic + saIx = 0: (24)

We substitute the inductor and capacitor equations,

sIl = L�1Vl = L�1AlV and Ic = sCVc = sCAcV;

into (24), and obtain the nodal circuit equations

AT
l L

�1AlV +AT
c CAcs

2V + saIx = 0:

The output of interest, Io, is selected among the
inductor currents, using the column vector b, i.e.,
Io = bTIl. Setting G = AT

l L
�1Al, C = AT

c CAc,
and lT = bTL�1Al, we can expressed Io as

Io = �lT(G+ s
2C)�1a| {z }

�

�Ix =
�

Re + Zin

E:

The input impedance of the two-port is de�ned as the
voltage Vx when a unit-valued current is applied:

Vx = a
TV = �aT(G+ s

2C)�1as| {z }
Zin

�Ix:

Setting B =
�
a l

�
, the LC two-port is then charac-

terized by the 2� 2 matrix transfer function

Z(s) = BT(G+ s
2C)�1B: (25)
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Figure 2: The PEEC circuit transfer function

Note that Zin = �sZ11(s) and � = �Z21(s).

The SyMPVL algorithm is applied to compute the
matrix-Pad�e approximation of (25). Since the matrix
G is singular (in electrical terms, there is no DC path
to the reference voltage (ground) from every node), we
employ a frequency shift

Z(s) = BT
�
G+ s0C+ (s2 � s0)C

��1
B (26)

and apply SyMPVL withG replaced byG+s0C and s
replaced by s2�s0. An approximation of order n = 50
was needed to obtain a good match of the function, as
illustrated in Figure 2. This approximation matches
2bn=mc = 2b50=2c = 50 matrix moments. Running
the algorithm 6 more iterations results in a perfect
match. Note that this example is an LC circuit, and
thus the approximation is stable and passive.

7.2 A Package Model

The next application is the analysis of a 64-pin
package model used for an RF integrated circuit. Only
eight of the package pins carry signal, the rest being
either unused or necessary for supply voltages. The
goal is to characterize the package as a 16-port com-
ponent (8 exterior and 8 interior terminals) and apply
SyMPVL model reduction on it. The reduced-order
model can than replace the large package subcircuit
in a circuit simulator resulting in considerable savings
in simulation time.

The package model is described by an RLC circuit
with approximatively 4000 circuit elements. The size
of the nodal circuit matrices is about 2000.

Figures 3 and 4 show the voltage-to-voltage trans-
fer function between the external terminal of pin no.
1 and the internal terminals of the same pin and the
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neighboring pin no. 2, respectively. The plots com-
pare reduced models of order 48, 64, and 80 with an
exact analysis. The results show that reduced-order
models can indeed replace the full package subcircuit
with little loss of accuracy. The reduction level de-
pends on the desired accuracy. The most accurate of
the models, which gives an almost perfect match of
the frequency response, only requires 80 state vari-
ables compared to 2000 for the full subcircuit. Since
the cost of nonlinear circuit simulation is superlinear
in the number of state variables the computational
savings can be signi�cant.

7.3 Synthesized interconnect circuit

The original circuit of this example represents an
interconnect parasitic network extracted as an RC cir-
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cuit. The purpose of the extraction is cross-talk anal-
ysis, and therefore the circuit models several capaci-
tively coupled wires. The original circuit consists of
36620 capacitors, 1355 resistors, and 1350 nodes. The
circuit is connected with logic gates at 17 ports. In
a simulation, the interconnect network will contribute
1350 nodal equations to the nonlinear system that de-
scribes the circuit. We applyed the SyMPVL algo-
rithm followed by the synthesis of a reduced circuit.
The synthesis resulted in a circuit with 170 capacitors,
459 resistors, and 34 nodes, thus reducing the inter-
connect contribution from 1350 to only 34 nodal equa-
tions. Figure 5 shows the results of simulating the full
interconnect compared to the reduced circuits. The
waveforms are indistinguishable and the CPU time re-
quired for the transient analysis went down from 132s
to 2:15s.

8 Concluding Remarks

In this paper, we have introduced SyMPVL as a
tool to compute reduced-order models for large pas-

sive linear circuit multi-ports. The algorithm is more
e�cient than the more general MPVL and has the
property of generating guaranteed stable and passive
models for the special cases of RC, RL, and LC cir-
cuits. The reduced-order model can be synthesized ex-
actly as a circuit, with possibly negative-valued com-
ponents. While the reduced-order models generated
by SyMPVL cannot be guaranteed to be stable and
passive for general RLC circuits, they can be made sta-
ble and passive using suitable \post-processing" tech-
niques.

The authors would like to thank Homer Wang for
providing the package model.

References
[1] J.I. Aliaga, D.L. Boley, R.W. Freund, and

V. Hern�andez, \A Lanczos-type algorithm for multi-

ple starting vectors," Numerical Analysis Manuscript

No. 96{18, Bell Labs, Murray Hill, NJ, Sep. 1996.

[2] B.D.O. Anderson and S. Vongpanitlerd, Network

Analysis and Synthesis, Englewood Cli�s, NJ:

Prentice-Hall, 1973.
[3] G.A. Baker, Jr. and P. Graves-Morris, Pad�e Approx-

imants, Second Edition, New York, NY: Cambridge

University Press, 1996.
[4] P. Feldmann and R.W. Freund, \E�cient linear cir-

cuit analysis by Pad�e approximation via the Lanczos

process," in Proc. Euro-DAC, Sep. 1994.
[5] P. Feldmann and R.W. Freund, \E�cient linear cir-

cuit analysis by Pad�e approximation via the Lanczos
process," IEEE Trans. Computer-Aided Design, vol.

14, pp. 639{649, May 1995.
[6] P. Feldmann and R.W. Freund, \Reduced-order mod-

eling of large linear subcircuits via a block Lanczos al-

gorithm," in Proc. 32nd ACM/IEEE DAC, June 1995.
[7] R.W. Freund, \An extension of the Lanczos-Pad�e

connection to the matrix case," Numerical Analysis

Manuscript, Bell Labs, Murray Hill, NJ, in prepara-

tion.
[8] R.W. Freund and P. Feldmann, \Reduced-order mod-

eling of large passive linear circuits by means of the
SyPVL algorithm," in Tech. Dig. IEEE/ACM IC-

CAD, Nov. 1996.
[9] G.H. Golub and C.F. Van Loan, Matrix Computa-

tions, Third Edition. Baltimore, MD: The Johns Hop-

kins University Press, 1996.
[10] W.B. Gragg, \Matrix interpretations and applications

of the continued fraction algorithm," Rocky Mountain

J. Math., vol. 4, pp. 213{225, 1974.
[11] K.J. Kerns, I.L. Wemple, and A.T. Yang, \Sta-

ble and e�cient reduction of substrate model net-

works using congruence transformations," in Tech.

Dig. IEEE/ACM ICCAD, Nov. 1995.
[12] C. Lanczos, \An iteration method for the solution of

the eigenvalue problem of linear di�erential and inte-
gral operators," J. Res. Nat. Bur. Standards, vol. 45,

pp. 255{282, 1950.
[13] L.T. Pillage and R.A. Rohrer, \Asymptotic wave-

form evaluation for timing analysis," IEEE Trans.

Computer-Aided Design, vol. 9, pp. 352{366, Apr.
1990.

[14] V. Raghavan, R.A. Rohrer, L.T. Pillage, J.Y. Lee,

J.E. Bracken, and M.M. Alaybeyi, \AWE{inspired,"
in Proc. IEEE CICC, May 1993.

[15] A.E. Ruehli, \Equivalent circuit models for three-

dimensional multiconductor systems," IEEE Trans.

Microwave Theory and Tech., vol. 22, pp. 216{221,

Mar. 1974.
[16] L.M. Silveira, M. Kamon, I. Elfadel, and J. White, \A

coordinate-transformed Arnoldi algorithm for gener-

ating guaranteed stable reduced-order models of RLC
circuits," in Tech. Dig. IEEE/ACM ICCAD, Nov.

1996.
[17] M.R. Wohlers, Lumped and Distributed Passive Net-

works, New York, N.Y.: Academic Press, 1969.


