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Abstract
Equivalent circuit modelling is a powerful technique
widely used for time-domain simulation of complex
electromagnetic VLSI structures. Surprisingly, para-
metric aspect of equivalent circuit modelling has not
received much attention until recently (although the
need for it has been previously advocated in sev-
eral publications). Having a circuit with element
values given as functions of the structure geometri-
cal parameters eliminates the need to recalculate S-
parameters and extract an equivalent circuit again
whenever the geometry is modified.

The purpose of this paper is to discuss a concept
of parametric equivalent circuit modelling for VLSI
structures, to systematically describe a methodology
of extracting such circuit from the given set of S-
parameters, and to provide an overview of methods
and problems arising at each step with referring
to existing publications. For demonstration of the
parametric equivalent circuit extraction, we use
a classical example of a microstrip interconnect
represented as an RLCG circuit1.

1. Introduction

Various structures that exhibit electromagnetic
(EM) behavior (inductors, connectors, interconnects,
etc.) have always been an important part of mi-
crowave circuits. Now they play an important role
in many modern VLSI systems-on-chips and seri-
ously affect their performance, especially at multi-
gigahertz frequencies. Typically, such structures are
measured [1] or simulated in frequency domain using
various EM simulators [2].

There exist a great variety of numerical electro-
magnetic field solvers that allow modelling of on-
and off-chip structures. However, electromagnetic
simulations are usually computationally intensive

1This research was supported by DARPA NEOCAD Program
under Grant No. N66001-01-8920 and NSF CAREER Award un-
der Grant No. 9985507

and are mostly used for verification rather than for
design and synthesis, when one needs to vary param-
eters many times in the process of optimization.

There are two ways to use S-parameters (or other
frequency domain parameters) obtained from EM
simulations in SPICE-like time-domain circuit sim-
ulators. Most common approach is to extract an
equivalent circuit whose S-parameters match those
obtained from EM modelling [3, 4]. Many differ-
ent techniques on implementing this approach ex-
ist in the literature [5]. An alternative approach is
to perform an inverse Fourier transform on the S-
parameters and then do a recursive convolution with
the circuit time-domain response [6].

When structure’s geometry changes (e.g. in the
process of parasitic-aware layout optimization) new
S-parameters must be obtained from electromagnetic
simulation and new circuit values must be extracted.
If the range in which EM structure parameters can
vary is known, EM simulations can be carried before-
hand to create a parametric table of values for equiv-
alent circuit. This parametric tabulating capability is
already present in several commercial EM software
products (e.g., Ansoft’s Optimetrics engine). One
can expect that the next logical step is to use extracted
parameter values to obtain circuit elements in a func-
tional form for later use by a circuit designer.

Surprisingly, this subject has not received much at-
tention in the CAD literature until recently. A good
representative paper on the subject has been pub-
lished by Sercu and Demuynck [7], who emphasized
an integration of circuit simulation, EM simulation,
and optimization tool. There exist several other more
narrow-focused publications that address, e.g. para-
metric modelling of microstrip discontinuities [8].

As it is known, analytical models that relate, e.g.
capacitance of a microstrip interconnect to its width
and dielectric thickness, exist only for simple geome-
tries [9, 10]. Especially when the parasitics effects
become significant, no systematic methods exist to
extract models that incorporate parasitics for general
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structures. Having an equivalent circuit whose ele-
ment values are functions of the structure parameters
does not only allow one to perform a faster circuit
simulation and optimization but also provides a de-
signer with a physical insight into the structure’s be-
havior.

In this paper, we give a systematic description of
the parametric equivalent circuit extraction process
and discuss all related advantages and difficulties.
We illustrate this process with a classical example of
a microstrip interconnect with a variable strip width.

2. Parametric Equivalent Circuit Ex-
traction Methodology

The process of parametric equivalent circuit
extraction is illustrated in Figure . Geometrical
parameters of the structure of interest are specified in
the range of interest determined by the layout design
rules (parameter step must be small enough not to
miss important frequency response features, such
as resonances). The structure is then modelled with
an appropriate EM simulation tool in the frequency
band of interest for each parameter value. An
equivalent circuit is then extracted from these data.
Parametric aspect of this process that we propose
to explore is the last step, when circuit element
values are approximated as functions of the structure
parameters. The last three stages of the process
shown in Figure are described below with more
details.

2.2. EM modelling and S-parameters

As mentioned before, a variety of numerical elec-
tromagnetic field solving tools have been developed
in the past, all of which have different limitations,
capabilities, input and output formats, and compu-
tational costs. Choosing the best tool for a partic-
ular task and successfully employing and integrat-
ing it into a VLSI CAD design flow are challeng-
ing tasks. Most EM tools are based on three ma-
jor methods and their flavors – method of moments
(e.g., Sonnet by Sonnet Technologies), finite element
method (e.g., HFSS by Ansoft Corporation), and
finite-difference time domain method (e.g., XFDTD
by Remcom, Inc.).

A number of equivalent parameters can be used
to describe an arbitrary N-port device, such as S, Z,
Y , ABCD, etc. Frickey [11] provides an excellent
overview of various parameters and relationships
between them: impedance matrix Z, admittance
matrix Y , hybrid matrix h, chain matrix ABCD,
scattering matrix S, and chain transfer matrix T .
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Figure 1: Parametric equivalent circuit extraction
methodology.

S-parameters are the most popular way of modelling
a device in frequency domain. They can be obtained
directly from EM simulations and are typically
computed for a device terminated with 50 Ohm
loads.

2.2. Circuit structure

A crucial assumption for any equivalent circuit
extraction approach is the knowledge of the circuit
structure whose element values are to be extracted.
This knowledge usually comes from a physical in-
sight [8] or from the shape of the S-parameter fre-
quency response. A large number of equivalent cir-
cuits are known and used for common structures like
spiral inductors or bent interconnects. For example, a
two port structure device can generally be modelled
with a π-circuit [12].

Another approach to finding an equivalent circuit
structure is genetic algorithm-based search [13], but
its speed and convergence to correct circuit structures
are currently the limiting factors of its applicability.

An assumed circuit structure is usually valid only
for a certain frequency range. For example, the num-
ber of sections in an equivalent ladder circuit for an
interconnect depends on the interconnect length with
respect to the minimum wavelength of interest. The
validity of one-stage lumped-circuit approximation
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breaks when the interconnect length becomes com-
parable to the quarter of a wavelength [14]. As the
frequency increases, more stages need to be added.

Many existing EM tools have a built-in equivalent
circuit extraction capability that is applied separately
to each frequency point. As a result, circuit element
values are frequency-dependent and change from
one frequency point to another.

2.3. Objective function minimization

A general objective of equivalent circuit extraction
is to find a set of circuit element values that results in
a good match between the S-parameters of the circuit
and the S-parameters of the given structure [13, 15].

For a two-port structure, the simplest objective
function whose minimization delivers this match
is [13]:

F =

2
∑

i,j=1

N
∑

n=1

∣

∣SM

ij
(ωn) − Sij(ωn)

∣

∣

2
, (1)

where SM

ij
are the S-parameters obtained by EM

modelling, Sij are the S-parameters of an equiva-
lent circuit, and ω1...ωN are the discrete frequency
points. Since the structure of the circuit is assumed
to be known, its S-parameters, and, hence, the ob-
jective function can also be found in analytical form
either by hand or using symbolical methods.

To find the set of circuit parameters that minimizes
the objective function, various optimization methods
can be used [16]. Most of the methods are gradient-
based. All methods require initial values for circuit
parameters to be specified.

One of the most popular gradient-based methods is
steepest descent method [5]. This method is based on
moving in the direction opposite to the gradient of the
objective function. The process is repeated at the new
point and the algorithm continues until a minimum is
found.

One commonly used parameter updating algo-
rithm for steepest descent method is the linear algo-
rithm:

~αn+1 = ~αn − η ~g , (2)

where ~α is the multi-dimensional vector of circuit pa-
rameters, ~g is the gradient vector and η is commonly
referred to as the learning rate and determines the
convergence of the process.

The gradient itself can be computed in two ways:
symbolically and numerically. Numerical approach
to gradient computation is the most popular one as
it does not require symbolic derivatives computation

for the given circuit. If a symbolical expression is
available for the objective function, the gradient vec-
tor ~g can also be found in an analytical form.

One should keep on mind that a general problem of
optimization in a multi-parameter space is the pres-
ence of multiple minima in the objective function.
There may be several possible circuit parameter com-
binations that result in a very small value of objective
function and lead to solution ambiguity. This prob-
lem is well known and has been discussed in litera-
ture [15].

For parametric circuit extraction the uniqueness of
solution is especially important: the same conformal
objective function minimum must be used for each
S-parameter set in order to ensure a proper func-
tional behavior of the circuit parameters vs. structure
parameters.

2.4. Parametrics

As mentioned before, tabular parametric ability is
present in many commercial simulators. For para-
metric analysis, a range of structure parameters is
specified beforehand. For each parameter set, S-
parameters are obtained from EM simulations and
equivalent circuit extraction process (objective func-
tion minimization) starts. Once the minimum of ob-
jective function is found, the obtained equivalent cir-
cuit element values are tabulated and the process is
repeated for all parameter sets in the given range.

The next logical step that can be performed is a
functional approximation – to have circuit element
values approximated as analytical functions of the
structure parameters. This would give a designer an
insight into a structure’s physical behavior and elimi-
nate the need to recalculate S-parameters and extract
an equivalent circuit again whenever the geometry is
modified.

To perform a functional approximation, the type
of basis analytical functions, such as polynomials,
has to be specified. While the behavior of some
structures may be complicated and involve loga-
rithms and exponents, polynomial basis is useful and
often sufficient to fairly approximate the first few
terms of the Taylor expansion of unknown functions.
Other basis functions, such as exponentials, can also
be used.

3. Example

For demonstration of parametric equivalent circuit
concept, we consider a simple microstrip intercon-
nect line example shown in Figure . The interconnect
is 160 mil long (1 mil=0.0254 mm) and consists of
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connect.
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Figure 3: RLCG equivalent circuit representa-
tion of microstrip interconnect.

aluminum trace of height t = 1 mil and width w on
top of alumina substrate of thickness h = 25 mil and
relative dielectric permittivity εr = 9.9. The line is
connected to a voltage source Vs, and the source and
load impedances are Rs = RL = 50 Ohm.

Such interconnect can typically be modelled as an
RLCG ladder network shown in Figure . If the length
of an interconnect is small compared to a wave-
length, it can be represented as one lumped RLCG
section. The transfer function (S21) of the RLCG cir-
cuit shown in Figure is given by:

S21(ω) =
1

1 + (R + jωL)
(

R−1

L
+ G + jωC

) . (3)

Let us use Sonnet as a designer’s EM tool of choice.
Sonnet uses a 1/20 λ criteria: if the structure is larger
than this size, it has to be modelled by parts which
are then cascaded To satisfy this criteria for our inter-
connect length of 160 mil, we will limit the frequency
range of consideration to 1 GHz.

Let us choose the width w as the geometrical pa-
rameter to be varied and use S21 for equivalent circuit
objective function minimization. For demonstration
purposes, we will select the following range of inter-
connect widths: 20 - 50 mil (with a step of 10 mil).
Using Sonnet, we can perform EM simulation and
obtain S21 responses, which are shown in Figure .

0 0.2 0.4 0.6 0.8 1

−0.06

−0.04

−0.02

0

M
ag

ni
tu

de
 (d

B
)

w=20 mil
w=30 mil
w=40 mil
w=50 mil

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

P
ha

se
 (d

eg
)

Frequency (GHz)

w=20 mil
w=30 mil
w=40 mil
w=50 mil

Figure 4: Magnitude and phase of S21 obtained
with Sonnet for different interconnect widths.
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Figure 5: Contour plot of the objective function
vs. L and C.

For illustration of the methodology, we created a
simple optimization tool based on the steepest de-
scent method, where the gradient of the objective
function is computed numerically. Assume that two
circuit parameters (L and C) are unknown and need
to be extracted. The objective function is given
by (1). Figure shows the contour plot of the objective
function vs. L and C for w = 30 mil. One can see
that there is a minimum. The exact at values of L and
C at minimum, found from running an optimization
tool, are L =1.76 nH and C =0.34 pF.

As mentioned before, initial values are needed for
optimization process. Usually, a designer has an ap-
proximate idea of the order of magnitude of initial
values. We use as initial estimate the following in-
tuitive values: L = 1 nH, C = 1 pF. We also as-
sume that conductance G and resistance R are small
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Figure 6: Magnitude and phase of S21 obtained
with Sonnet (w = 30 mil) and approximated with
an equivalent circuit .

but approximately known (for 30 mil wide trace they
are: R = 0.03 and G = 1e−7). In this specific case,
our optimization tool, written in Matlab, takes about
1.5 s to run on a 2.5 GHz PC and stops after 180 itera-
tions, when the objective function becomes less than
4 · 10

−5. For each of the four frequency responses,
the steepest descent algorithm converged to the same
conformal minimum of the objective function.

A typical comparison between the original fre-
quency response, obtained with Sonnet, and the fre-
quency response of the equivalent circuit is given
in Figure (the width of the interconnect is 30 mil).
One can see that the agreement between frequency
responses is very good.

Extracted L and C were approximated as functions
of width w in the vicinity of wo = 30 mil using the
polyfit function in MATLAB for first-order polyno-
mials, which gave the following dependence of L and
C (per unit length) on the interconnect width w:

L ≈ Lo + a (wo − w), C ≈ Co + b (w − wo), (4)

where Lo and Co are inductance and capacitance for
the width wo and a and b are constant coefficients.

In our specific case, the geometry was simple and
well known. Analytical expressions given by (4) and
the related coefficients could be obtained directly by
writing the first two terms in the Taylor expansion
of established analytical formulas for microstrip
impedance and capacitance (see e.g. [17]). However,
as mentioned before, for more complex geometries
analytical formulas do not exist and the advantage of
extracting a parametric equivalent circuit is obvious.

4. Discussion

The main advantage of the presented methodology
is that functional approximation gives a designer ac-
cess to equivalent circuit parameters as functions of
geometrical and material parameters of the structure,
even for those structures for which analytical model
is not available. Another advantage is that it provides
values for a continuum of geometrical parameters of
the structure, not only for a discrete set available from
the table or library.

The main drawback of the proposed methodology
is the necessity of carrying multiple EM simulations
beforehand, which means that a designer must spec-
ify or adaptively change the range of structure pa-
rameters that he is interested in and the number of
points to be used, which determines the runtime. The
accuracy of parametric equivalent circuit extraction
strongly depends on the accuracy of EM simulator.

One issue to be aware of is that for wide-
band structures, the equivalent circuit is frequency-
dependent. Having one circuit structure that is valid
throughout the whole multi-gigahertz band would
be ideal but may not be possible due to different
frequency-dependent physical effects that take place
in a structure (e.g., skin effect, proximity effect, etc.).
Many of existing EM simulators are conservative in
that regard. As mentioned before, Sonnet uses a 1/20
λ criteria to determine the maximum size of structure
that can be approximated with one lumped circuit
section. This can be viewed as an inter-dependence
of frequency and geometrical parameters of VLSI
structure.

The parametric methodology can be applied to all
variables associated with a VLSI structure (geometri-
cal parameters, electrical parameters, and frequency)
to create, e.g., a library of equivalent circuits whose
electrical parameters and frequency range of validity
are given as functions of geometrical parameters and
vice versa.

If a VLSI structure contains multiple ports, the
minimization of the objective function has to be per-
formed over a multi-port S-parameter matrix. The
circuit structure in this case is usually more involved
and equivalent circuit extraction process is more
challenging compared to two-port devices.

The described functional parametric methodology
can easily be integrated into most existing commer-
cial EM simulators that have a built-in equivalent
circuit export option. It can also be linked to a
parametric and optimization engine already present
in a simulator (and typically used for optimizing
power, efficiency, reflection coefficient, or other
system parameters).
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5. Conclusion

In this paper, we described a methodology of ex-
tracting a functional parametric equivalent circuit
from the set of S-parameters obtained via EM sim-
ulation for a VLSI structure with variable geomet-
ric parameters. We presented an overview of this
methodology, discussed associated advantages and
problems, and referred to existing publications in this
area.

We demonstrated the methodology with the classi-
cal example of a straight microstrip interconnect, for
which analytical capacitance and inductance models
are available. The interconnect was modelled in Son-
net and represented as an RLCG network for equiv-
alent circuit extraction using steepest descent opti-
mization. The equivalent circuit element values were
obtained as functions of the microstrip width.

The presented parametric approach gives a de-
signer an insight into a physical behavior of the struc-
ture and can easily be integrated into existing EM
simulators which have an equivalent circuit export
option. It eliminates the need to recalculate the S-
parameters whenever the layout is modified and can
be very valuable for time-domain simulation and op-
timization of VLSI systems that include both circuit
and EM structures coupled together.
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